Superconducting qubit based on twisted cuprate van der Waals
heterostructures
- URL: http://arxiv.org/abs/2308.00839v2
- Date: Wed, 9 Aug 2023 06:16:19 GMT
- Title: Superconducting qubit based on twisted cuprate van der Waals
heterostructures
- Authors: Valentina Brosco, Giuseppe Serpico, Valerii Vinokur, Nicola Poccia,
Uri Vool
- Abstract summary: VdW assembly enables the fabrication of novel Josephson junctions.
A capacitively shunted qubit called flowermon is protected against chargenoise-induced relaxation and quasi-particle dissipation.
This inherently protected qubit paves the way to a new class of high-coherence hybrid superconducting quantum devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Van-der-Waals (vdW) assembly enables the fabrication of novel Josephson
junctions utilizing an atomically sharp interface between two exfoliated and
relatively twisted $\rm{Bi_2Sr_2CaCu_2O_{8+x}}$ (Bi2212) flakes. In a range of
twist angles around $45^\circ$, the junction provides a regime where the
interlayer two-Cooper pair tunneling dominates the current-phase relation. Here
we propose to employ this novel junction to realize a capacitively shunted
qubit that we call flowermon. The $d$-wave nature of the order parameter endows
the flowermon with inherent protection against charge-noise-induced relaxation
and quasiparticle-induced dissipation. This inherently protected qubit paves
the way to a new class of high-coherence hybrid superconducting quantum devices
based on unconventional superconductors.
Related papers
- Flux-Tunable Regimes and Supersymmetry in Twisted Cuprate Heterostructures [39.58317527488534]
Two Josephson junctions are integrated in a SQuID circuit threaded by a magnetic flux.
We show that the flowermon qubit regime is maintained up to a finite critical value of the magnetic field.
The interplay between the inherent twisted d-wave nature of the order parameter and the external magnetic flux enables the implementation of different artificial atoms.
arXiv Detail & Related papers (2024-05-06T13:27:19Z) - A gate tunable transmon qubit in planar Ge [30.432877421232842]
Gate-tunable transmons (gatemons) employing semiconductor Josephson junctions have emerged as building blocks for hybrid quantum circuits.
We present a gatemon fabricated in planar Germanium.
We showcase the qubit tunability in a broad frequency range with resonator and two-tone spectroscopy.
arXiv Detail & Related papers (2024-03-25T13:52:05Z) - Tunneling of fluxons via a Josephson resonant level [0.0]
A superconducting loop can be coherently coupled by quantum phase slips occurring at a weak link such as a Josephson junction.
We analyze this scenario by computing the coupling between fluxons as the level is brought into resonance with the superconducting condensate.
These findings can inform experiments on bifluxon qubits as well as the design of novel types of protected qubits.
arXiv Detail & Related papers (2023-10-04T18:33:30Z) - Signatures of Parafermion Zero Modes in Fractional Quantum Hall-Superconductor Heterostructures [1.5020330976600738]
Parafermion zero modes can arise in hybrid structures composed of $nu=1/m$ fractional quantum Hall edges proximitized with an s-wave superconductor.
We consider parafermion and Cooper pair tunneling, and backscattering in a junction formed in such hybrid structures.
arXiv Detail & Related papers (2023-09-25T18:00:00Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Cavity magnon-polaritons in cuprate parent compounds [0.0]
cavity control of quantum matter may offer new ways to study and manipulate many-body systems.
We propose a scheme for coupling Terahertz resonators to the antiferromagnetic fluctuations in a cuprate parent compound.
We find a strong, but heavily damped, bimagnon-cavity interaction which produces highly asymmetric cavity line-shapes.
arXiv Detail & Related papers (2021-06-15T01:19:57Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z) - Generating ${\rm N00N}$-states of surface plasmon-polariton pairs with a
nanoparticle [58.720142291102135]
We consider a generation of two-particle quantum states in the process of spontaneous parametric down-conversion of light.
We show that for certain excitation geometries, $rm N00N$-states of surface plasmon-polariton pairs could be obtained.
arXiv Detail & Related papers (2020-02-12T22:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.