論文の概要: Quantum Reservoir Probing of Quantum Information Scrambling
- arxiv url: http://arxiv.org/abs/2308.00898v1
- Date: Wed, 2 Aug 2023 01:26:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 14:08:36.968578
- Title: Quantum Reservoir Probing of Quantum Information Scrambling
- Title(参考訳): 量子情報スクランブルの量子貯留層探索
- Authors: Kaito Kobayashi and Yukitoshi Motome
- Abstract要約: 本稿では,量子情報のスクランブルを診断するための量子貯水池探索法(QRP)を提案する。
我々は,QRPが量子カオス系における準粒子媒介情報伝達と相関媒介情報伝達の区別に成功していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum information scrambling is the dynamical process where initially
localized quantum information spreads throughout an entire system. Here, by
extending the idea of quantum reservoir computing, we propose the quantum
reservoir probing (QRP) to diagnose quantum information scrambling. As a
paradigmatic example, we investigate scrambling in a one-dimensional quantum
Ising chain. We show that the QRP successfully distinguishes between
quasiparticle-mediated information propagation in a free fermion system and
correlation-mediated scrambling in a quantum chaotic system. Furthermore, via
the scanning of read-out operators, the QRP can elucidate the dynamical
distribution of quantum information in the Hilbert space, a distinct advantage
over the conventional methods with out-of-time-order correlators and tripartite
mutual information.
- Abstract(参考訳): 量子情報スクランブル(quantum information scramling)は、初期局所化された量子情報がシステム全体に広がる動的過程である。
ここでは,量子貯留層計算の考え方を拡張して,量子情報スクランブル診断のための量子貯留層探索(qrp)を提案する。
パラダイム的な例として、一次元量子イジングチェーンにおけるスクランブルについて研究する。
量子カオス系において,QRPは,自由フェルミオン系における準粒子媒介情報伝達と相関媒介情報伝達の区別に成功していることを示す。
さらに、読み出し作用素の走査により、qrpはヒルベルト空間における量子情報の力学分布を解明することができ、時間外相関子と三成分相互情報を用いた従来の方法とは大きく異なる利点を持つ。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Quantum reservoir computing on random regular graphs [0.0]
量子貯水池コンピューティング(QRC)は、入力駆動多体量子システムと古典的な学習技術を組み合わせた低複雑性学習パラダイムである。
我々は、情報局在化、動的量子相関、および乱れハミルトニアンの多体構造について研究する。
そこで本研究では、乱れたアナログ量子学習プラットフォームの最適設計のためのガイドラインを提供する。
論文 参考訳(メタデータ) (2024-09-05T16:18:03Z) - An operational definition of quantum information scrambling [0.0]
量子情報スクランブル(QIS)は、いくつかの量子系の特徴である。
本稿では,QISの定式化に基づく量子状態の量子化に基づく新しい計算効率のQIS量化器を提案する。
等尺的量子進化によって引き起こされるQISの度合いを反映した最適推定確率が、アクセス可能な最小情報に直接接続されていることを示す。
論文 参考訳(メタデータ) (2023-12-18T19:00:01Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
調査では、量子ドメイン(QD)マルチインプットマルチアウトプット(MIMO)、QD非直交多重アクセス(NOMA)、量子セキュアダイレクト通信(QSDC)などの技術を調査した。
量子センシング、量子レーダ、量子タイミングの現在の状況は、将来の応用をサポートするために簡単にレビューされる。
論文 参考訳(メタデータ) (2023-11-09T09:45:52Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Scrambling Dynamics and Out-of-Time Ordered Correlators in Quantum
Many-Body Systems: a Tutorial [0.0]
このチュートリアルでは、量子多体系における量子情報スクランブルの物理について紹介する。
目的は、量子情報の拡散の正確な定量化方法と、複雑な量子系における因果関係の出現方法を理解することである。
論文 参考訳(メタデータ) (2022-02-14T22:04:12Z) - A prototype of quantum von Neumann architecture [0.0]
我々は、フォン・ノイマンアーキテクチャの量子バージョンである普遍量子コンピュータシステムのモデルを提案する。
量子メモリユニットの要素としてebitを使用し、量子制御ユニットと処理ユニットの要素としてqubitを使用する。
本研究は,量子情報の多様体パワーを実証し,量子コンピュータシステム構築の道を開くものである。
論文 参考訳(メタデータ) (2021-12-17T06:33:31Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Information Processing Capacity of Spin-Based Quantum Reservoir
Computing Systems [0.0]
イジングスピンネットワークを用いた量子貯水池計算(QRC)は古典的な貯水池計算の量子バージョンとして導入された。
我々は、情報処理能力(IPC)を用いたスピンベースQRCモデルの性能を特徴付ける。
この研究は、貯水池計算のためのスピンの量子ネットワークの計算能力を明確に示している。
論文 参考訳(メタデータ) (2020-10-13T13:26:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。