Simulation-based inference using surjective sequential neural likelihood
estimation
- URL: http://arxiv.org/abs/2308.01054v2
- Date: Fri, 23 Feb 2024 07:39:14 GMT
- Title: Simulation-based inference using surjective sequential neural likelihood
estimation
- Authors: Simon Dirmeier, Carlo Albert, Fernando Perez-Cruz
- Abstract summary: Surjective Sequential Neural Likelihood estimation is a novel method for simulation-based inference.
By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets.
- Score: 50.24983453990065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Surjective Sequential Neural Likelihood (SSNL) estimation, a novel
method for simulation-based inference in models where the evaluation of the
likelihood function is not tractable and only a simulator that can generate
synthetic data is available. SSNL fits a dimensionality-reducing surjective
normalizing flow model and uses it as a surrogate likelihood function which
allows for conventional Bayesian inference using either Markov chain Monte
Carlo methods or variational inference. By embedding the data in a
low-dimensional space, SSNL solves several issues previous likelihood-based
methods had when applied to high-dimensional data sets that, for instance,
contain non-informative data dimensions or lie along a lower-dimensional
manifold. We evaluate SSNL on a wide variety of experiments and show that it
generally outperforms contemporary methods used in simulation-based inference,
for instance, on a challenging real-world example from astrophysics which
models the magnetic field strength of the sun using a solar dynamo model.
Related papers
- All-in-one simulation-based inference [19.41881319338419]
We present a new amortized inference method -- the Simformer -- which overcomes current limitations.
The Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks.
It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data.
arXiv Detail & Related papers (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Misspecification-robust Sequential Neural Likelihood for
Simulation-based Inference [0.20971479389679337]
We propose a novel SNL method, which through the incorporation of additional adjustment parameters, is robust to model misspecification.
We demonstrate the efficacy of our approach through several illustrative examples.
arXiv Detail & Related papers (2023-01-31T02:28:18Z) - Maximum Likelihood Learning of Unnormalized Models for Simulation-Based
Inference [44.281860162298564]
We introduce two synthetic likelihood methods for Simulation-Based Inference.
We learn a conditional energy-based model (EBM) of the likelihood using synthetic data generated by the simulator.
We demonstrate the properties of both methods on a range of synthetic datasets, and apply them to a model of the neuroscience network in the crab.
arXiv Detail & Related papers (2022-10-26T14:38:24Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
We propose a novel Sinkhorn Natural Gradient (SiNG) algorithm which acts as a steepest descent method on the probability space endowed with the Sinkhorn divergence.
We show that the Sinkhorn information matrix (SIM), a key component of SiNG, has an explicit expression and can be evaluated accurately in complexity that scales logarithmically.
In our experiments, we quantitatively compare SiNG with state-of-the-art SGD-type solvers on generative tasks to demonstrate its efficiency and efficacy of our method.
arXiv Detail & Related papers (2020-11-09T02:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.