Spatio-Temporal Branching for Motion Prediction using Motion Increments
- URL: http://arxiv.org/abs/2308.01097v4
- Date: Wed, 17 Jul 2024 12:12:48 GMT
- Title: Spatio-Temporal Branching for Motion Prediction using Motion Increments
- Authors: Jiexin Wang, Yujie Zhou, Wenwen Qiang, Ying Ba, Bing Su, Ji-Rong Wen,
- Abstract summary: Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
- Score: 55.68088298632865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications, but it remains a challenging task due to the stochastic and aperiodic nature of future poses. Traditional methods rely on hand-crafted features and machine learning techniques, which often struggle to model the complex dynamics of human motion. Recent deep learning-based methods have achieved success by learning spatio-temporal representations of motion, but these models often overlook the reliability of motion data. Additionally, the temporal and spatial dependencies of skeleton nodes are distinct. The temporal relationship captures motion information over time, while the spatial relationship describes body structure and the relationships between different nodes. In this paper, we propose a novel spatio-temporal branching network using incremental information for HMP, which decouples the learning of temporal-domain and spatial-domain features, extracts more motion information, and achieves complementary cross-domain knowledge learning through knowledge distillation. Our approach effectively reduces noise interference and provides more expressive information for characterizing motion by separately extracting temporal and spatial features. We evaluate our approach on standard HMP benchmarks and outperform state-of-the-art methods in terms of prediction accuracy.
Related papers
- TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes [63.95928298690001]
We present TPP-Gaze, a novel and principled approach to model scanpath dynamics based on Neural Temporal Point Process (TPP)
Our results show the overall superior performance of the proposed model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-30T19:22:38Z) - Triplet Attention Transformer for Spatiotemporal Predictive Learning [9.059462850026216]
We propose an innovative triplet attention transformer designed to capture both inter-frame dynamics and intra-frame static features.
The model incorporates the Triplet Attention Module (TAM), which replaces traditional recurrent units by exploring self-attention mechanisms in temporal, spatial, and channel dimensions.
arXiv Detail & Related papers (2023-10-28T12:49:33Z) - On the Importance of Spatial Relations for Few-shot Action Recognition [109.2312001355221]
In this paper, we investigate the importance of spatial relations and propose a more accurate few-shot action recognition method.
A novel Spatial Alignment Cross Transformer (SA-CT) learns to re-adjust the spatial relations and incorporates the temporal information.
Experiments reveal that, even without using any temporal information, the performance of SA-CT is comparable to temporal based methods on 3/4 benchmarks.
arXiv Detail & Related papers (2023-08-14T12:58:02Z) - Mutual Information-Based Temporal Difference Learning for Human Pose
Estimation in Video [16.32910684198013]
We present a novel multi-frame human pose estimation framework, which employs temporal differences across frames to model dynamic contexts.
To be specific, we design a multi-stage entangled learning sequences conditioned on multi-stage differences to derive informative motion representation sequences.
These place us to rank No.1 in the Crowd Pose Estimation in Complex Events Challenge on benchmark HiEve.
arXiv Detail & Related papers (2023-03-15T09:29:03Z) - STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond [78.129039340528]
We propose a temporal-aware unit (STAU) for video prediction and beyond.
Our STAU can outperform other methods on all tasks in terms of performance and efficiency.
arXiv Detail & Related papers (2022-04-20T13:42:51Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Behavior Recognition Based on the Integration of Multigranular Motion
Features [17.052997301790693]
We propose a novel behavior recognition method based on the integration of multigranular (IMG) motion features.
We evaluate our model on several action recognition benchmarks such as HMDB51, Something-Something and UCF101.
arXiv Detail & Related papers (2022-03-07T02:05:26Z) - Motion Prediction via Joint Dependency Modeling in Phase Space [40.54430409142653]
We introduce a novel convolutional neural model to leverage explicit prior knowledge of motion anatomy.
We then propose a global optimization module that learns the implicit relationships between individual joint features.
Our method is evaluated on large-scale 3D human motion benchmark datasets.
arXiv Detail & Related papers (2022-01-07T08:30:01Z) - Learning Self-Similarity in Space and Time as Generalized Motion for
Action Recognition [42.175450800733785]
We propose a rich motion representation based on video self-similarity (STSS)
We leverage the whole volume of STSSS and let our model learn to extract an effective motion representation from it.
The proposed neural block, dubbed SELFY, can be easily inserted into neural architectures and trained end-to-end without additional supervision.
arXiv Detail & Related papers (2021-02-14T07:32:55Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.