Motion Prediction via Joint Dependency Modeling in Phase Space
- URL: http://arxiv.org/abs/2201.02365v1
- Date: Fri, 7 Jan 2022 08:30:01 GMT
- Title: Motion Prediction via Joint Dependency Modeling in Phase Space
- Authors: Pengxiang Su, Zhenguang Liu, Shuang Wu, Lei Zhu, Yifang Yin, Xuanjing
Shen
- Abstract summary: We introduce a novel convolutional neural model to leverage explicit prior knowledge of motion anatomy.
We then propose a global optimization module that learns the implicit relationships between individual joint features.
Our method is evaluated on large-scale 3D human motion benchmark datasets.
- Score: 40.54430409142653
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Motion prediction is a classic problem in computer vision, which aims at
forecasting future motion given the observed pose sequence. Various deep
learning models have been proposed, achieving state-of-the-art performance on
motion prediction. However, existing methods typically focus on modeling
temporal dynamics in the pose space. Unfortunately, the complicated and high
dimensionality nature of human motion brings inherent challenges for dynamic
context capturing. Therefore, we move away from the conventional pose based
representation and present a novel approach employing a phase space trajectory
representation of individual joints. Moreover, current methods tend to only
consider the dependencies between physically connected joints. In this paper,
we introduce a novel convolutional neural model to effectively leverage
explicit prior knowledge of motion anatomy, and simultaneously capture both
spatial and temporal information of joint trajectory dynamics. We then propose
a global optimization module that learns the implicit relationships between
individual joint features.
Empirically, our method is evaluated on large-scale 3D human motion benchmark
datasets (i.e., Human3.6M, CMU MoCap). These results demonstrate that our
method sets the new state-of-the-art on the benchmark datasets. Our code will
be available at https://github.com/Pose-Group/TEID.
Related papers
- PoseMamba: Monocular 3D Human Pose Estimation with Bidirectional Global-Local Spatio-Temporal State Space Model [7.286873011001679]
We propose a purely SSM-based approach with linear correlations for complexityD human pose estimation in monocular video video.
Specifically, we propose a bidirectional global temporal-local-temporal block that comprehensively models human joint relations within individual frames as well as across frames.
This strategy provides a more logical geometric ordering strategy, resulting in a combined-local spatial scan.
arXiv Detail & Related papers (2024-08-07T04:38:03Z) - Multiscale Residual Learning of Graph Convolutional Sequence Chunks for
Human Motion Prediction [23.212848643552395]
A new method is proposed for human motion prediction by learning temporal and spatial dependencies.
Our proposed method is able to effectively model the sequence information for motion prediction and outperform other techniques to set a new state-of-the-art.
arXiv Detail & Related papers (2023-08-31T15:23:33Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Mutual Information-Based Temporal Difference Learning for Human Pose
Estimation in Video [16.32910684198013]
We present a novel multi-frame human pose estimation framework, which employs temporal differences across frames to model dynamic contexts.
To be specific, we design a multi-stage entangled learning sequences conditioned on multi-stage differences to derive informative motion representation sequences.
These place us to rank No.1 in the Crowd Pose Estimation in Complex Events Challenge on benchmark HiEve.
arXiv Detail & Related papers (2023-03-15T09:29:03Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
We study the use of different types of attention, computed at joint, body part, and full pose levels.
Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2021-06-17T08:08:11Z) - Graph-based Normalizing Flow for Human Motion Generation and
Reconstruction [20.454140530081183]
We propose a probabilistic generative model to synthesize and reconstruct long horizon motion sequences conditioned on past information and control signals.
We evaluate the models on a mixture of motion capture datasets of human locomotion with foot-step and bone-length analysis.
arXiv Detail & Related papers (2021-04-07T09:51:15Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.