論文の概要: A Hyper-pixel-wise Contrastive Learning Augmented Segmentation Network
for Old Landslide Detection Using High-Resolution Remote Sensing Images and
Digital Elevation Model Data
- arxiv url: http://arxiv.org/abs/2308.01251v1
- Date: Wed, 2 Aug 2023 16:11:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 12:24:50.488901
- Title: A Hyper-pixel-wise Contrastive Learning Augmented Segmentation Network
for Old Landslide Detection Using High-Resolution Remote Sensing Images and
Digital Elevation Model Data
- Title(参考訳): 高解像度リモートセンシング画像とディジタル標高モデルデータを用いた地すべり検出のためのハイパーピクセル・コントラスト学習強化セグメンテーションネットワーク
- Authors: Yiming Zhou, Yuexing Peng, Wei Li, Junchuan Yu, Daqing Ge, Wei Xiang
- Abstract要約: 提案したHPCL-Netは,Loess Plateau古地すべりデータセットを用いて評価した。
実験結果から, 古い地すべり検出の信頼性が大幅に向上することが示唆された。
- 参考スコア(独自算出の注目度): 8.199669892719566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a harzard disaster, landslide often brings tremendous losses to humanity,
so it's necessary to achieve reliable detection of landslide. However, the
problems of visual blur and small-sized dataset cause great challenges for old
landslide detection task when using remote sensing data. To reliably extract
semantic features, a hyper-pixel-wise contrastive learning augmented
segmentation network (HPCL-Net) is proposed, which augments the local salient
feature extraction from the boundaries of landslides through HPCL and fuses the
heterogeneous infromation in the semantic space from High-Resolution Remote
Sensing Images and Digital Elevation Model Data data. For full utilization of
the precious samples, a global hyper-pixel-wise sample pair queues-based
contrastive learning method, which includes the construction of global queues
that store hyper-pixel-wise samples and the updating scheme of a momentum
encoder, is developed, reliably enhancing the extraction ability of semantic
features. The proposed HPCL-Net is evaluated on a Loess Plateau old landslide
dataset and experiment results show that the model greatly improves the
reliablity of old landslide detection compared to the previous old landslide
segmentation model, where mIoU metric is increased from 0.620 to 0.651,
Landslide IoU metric is increased from 0.334 to 0.394 and F1-score metric is
increased from 0.501 to 0.565.
- Abstract(参考訳): 災害として、地すべりはしばしば人類に多大な損失をもたらすため、地すべりの確実な検出を実現する必要がある。
しかし, リモートセンシングデータを用いた地すべり検出作業では, 視覚のぼやけや小型データセットの問題点が大きな課題となっている。
セマンティックな特徴を確実に抽出するために,HPCLを介して地すべりの境界から局所的に有意な特徴を抽出し,高解像度リモートセンシング画像とディジタル標高モデルデータからセマンティック空間における不均一なインジェクションを融合する,HPCL-Net(Hyper-Pixel-wise contrastive Learning augmented segmentation Network)を提案する。
貴重なサンプルをフル活用するために,ハイパーピクセル単位のサンプルを格納するグローバルキューの構築と運動量エンコーダの更新スキームを含むグローバルハイパーピクセル単位のサンプルペアキューベースのコントラスト学習手法を開発し,意味的特徴の抽出能力を確実に向上した。
提案したHPCL-Netは,Loess高原の旧地すべりデータセットを用いて評価し,mIoU測定値が0.620から0.651に,Landslide IoU測定値が0.334から0.394に,F1スコア測定値が0.501から0.565に,旧地すべり検出の信頼性を大幅に向上させることを示した。
関連論文リスト
- MRIFE: A Mask-Recovering and Interactive-Feature-Enhancing Semantic Segmentation Network For Relic Landslide Detection [7.6822321138894765]
長い期間にわたって形成された遺物地すべりは、再活性化の可能性を秘めており、危険な地質現象となっている。
遺物地すべりの高解像度リモートセンシング画像は、物体の視界のぼかし問題など、多くの課題に直面している。
より効率的な特徴抽出と分離のためのセマンティックセグメンテーションモデルとして,マスクの回収と対話型フェールエンハンシング(MRIFE)を提案する。
提案したMRIFEは実地すべりデータセットを用いて評価され,実験結果から,地すべり検出の性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-11-26T07:15:50Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
現在の最先端ディープラーニング(DL)に基づく損傷検出モデルは、複雑でノイズの多い環境では優れた特徴抽出能力を欠いていることが多い。
DenseSPH-YOLOv5は、DenseNetブロックをバックボーンに統合したリアルタイムDLベースの高性能損傷検出モデルである。
DenseSPH-YOLOv5は平均平均精度(mAP)が85.25%、F1スコアが81.18%、精度(P)が89.51%である。
論文 参考訳(メタデータ) (2023-03-07T22:53:36Z) - An Iterative Classification and Semantic Segmentation Network for Old
Landslide Detection Using High-Resolution Remote Sensing Images [6.584865979714256]
イテレーティブな分類とセマンティックセグメンテーションネットワーク(ICSSN)が開発され、オブジェクトレベルとピクセルレベルの分類性能を大幅に向上させることができる。
オブジェクトレベルとピクセルレベルの両方の分類性能が改善されるように、反復的なトレーニング戦略をセマンティック空間に融合させる。
実験の結果, ICSSNは旧地すべり検出の分類精度とセグメンテーション精度を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-02-24T02:51:09Z) - Unsupervised Spike Depth Estimation via Cross-modality Cross-domain Knowledge Transfer [53.413305467674434]
スパイク深度推定をサポートするためにオープンソースのRGBデータを導入し,そのアノテーションと空間情報を活用する。
教師なしスパイク深さ推定を実現するために,クロスモーダルクロスドメイン(BiCross)フレームワークを提案する。
提案手法は,RGB指向の教師なし深度推定法と比較して,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-08-26T09:35:20Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - A New Mask R-CNN Based Method for Improved Landslide Detection [54.7905160534631]
本稿では,Mask R-CNN機能を利用した地すべり検出手法を提案する。
地すべり及び非地すべり画像を含む160個の要素からなるデータセットを作成する。
提案アルゴリズムは丘陵地帯の土地利用計画立案者や政策立案者にとって潜在的に有用である。
論文 参考訳(メタデータ) (2020-10-04T07:46:37Z) - Locality-Aware Rotated Ship Detection in High-Resolution Remote Sensing
Imagery Based on Multi-Scale Convolutional Network [7.984128966509492]
マルチスケール畳み込みニューラルネットワーク(CNN)に基づく局所性認識型回転船検出(LARSD)フレームワークを提案する。
提案フレームワークはUNetのようなマルチスケールCNNを用いて高解像度の情報を持つマルチスケール特徴マップを生成する。
検出データセットを拡大するために、新しい高解像度船舶検出(HRSD)データセットを構築し、2499の画像と9269のインスタンスを異なる解像度でGoogle Earthから収集した。
論文 参考訳(メタデータ) (2020-07-24T03:01:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。