BCDDO: Binary Child Drawing Development Optimization
- URL: http://arxiv.org/abs/2308.01270v3
- Date: Thu, 11 Apr 2024 17:21:08 GMT
- Title: BCDDO: Binary Child Drawing Development Optimization
- Authors: Abubakr S. Issa, Yossra H. Ali, Tarik A. Rashid,
- Abstract summary: A Binary Child Drawing Development Optimization (BCDDO) is suggested for choosing the wrapper features in this study.
To achieve the best classification accuracy, a subset of crucial features is selected using the suggestedBCDDO.
The suggested approach has significantly outperformed discussed techniques in the area of feature selection to increase classification accuracy.
- Score: 4.395397502990339
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A lately created metaheuristic algorithm called Child Drawing Development Optimization (CDDO) has proven to be effective in a number of benchmark tests. A Binary Child Drawing Development Optimization (BCDDO) is suggested for choosing the wrapper features in this study. To achieve the best classification accuracy, a subset of crucial features is selected using the suggested BCDDO. The proposed feature selection technique's efficiency and effectiveness are assessed using the Harris Hawk, Grey Wolf, Salp, and Whale optimization algorithms. The suggested approach has significantly outperformed the previously discussed techniques in the area of feature selection to increase classification accuracy. Moderate COVID, breast cancer, and big COVID are the three datasets utilized in this study. The classification accuracy for each of the three datasets was (98.75, 98.83%, and 99.36) accordingly.
Related papers
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.
We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - Optimal Kernel Choice for Score Function-based Causal Discovery [92.65034439889872]
We propose a kernel selection method within the generalized score function that automatically selects the optimal kernel that best fits the data.
We conduct experiments on both synthetic data and real-world benchmarks, and the results demonstrate that our proposed method outperforms kernel selection methods.
arXiv Detail & Related papers (2024-07-14T09:32:20Z) - Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation [68.75387874066647]
We propose an Uncertainty-Aware testing-time optimization framework for 3D human pose estimation.
Our approach outperforms the previous best result by a large margin of 4.5% on Human3.6M.
arXiv Detail & Related papers (2024-02-04T04:28:02Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - An efficient hybrid classification approach for COVID-19 based on Harris
Hawks Optimization and Salp Swarm Optimization [0.0]
This study presents a hybrid binary version of the Harris Hawks Optimization algorithm (HHO) and Salp Swarm Optimization (SSA) for Covid-19 classification.
The proposed algorithm (HHOSSA) achieved 96% accuracy with the SVM, 98% and 98% accuracy with two classifiers.
arXiv Detail & Related papers (2022-12-25T19:52:18Z) - A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A
COVID-19 Case Study [1.6436293069942312]
The "Curse of Dimensionality" induced by the rapid development of information science might have a negative impact when dealing with big datasets.
We propose a variant of the sparrow search algorithm (SSA), called Tent L'evy flying sparrow search algorithm (TFSSA)
TFSSA is used to select the best subset of features in the packing pattern for classification purposes.
arXiv Detail & Related papers (2022-09-20T15:12:10Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - RSO: A Novel Reinforced Swarm Optimization Algorithm for Feature
Selection [0.0]
In this paper, we propose a novel feature selection algorithm named Reinforced Swarm Optimization (RSO)
This algorithm embeds the widely used Bee Swarm Optimization (BSO) algorithm along with Reinforcement Learning (RL) to maximize the reward of a superior search agent and punish the inferior ones.
The proposed method is evaluated on 25 widely known UCI datasets containing a perfect blend of balanced and imbalanced data.
arXiv Detail & Related papers (2021-07-29T17:38:04Z) - Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features
Selection [1.990876596716716]
Cervical cancer is one of the most deadly and common diseases among women worldwide.
We propose a fully automated framework that utilizes Deep Learning and feature selection.
The framework is evaluated on three publicly available benchmark datasets.
arXiv Detail & Related papers (2021-06-09T08:57:22Z) - A Scalable Feature Selection and Opinion Miner Using Whale Optimization
Algorithm [6.248184589339059]
Using feature selection techniques not only support to understand data better but also lead to higher speed and also accuracy.
In this article, the Whale Optimization algorithm is considered and applied to the search for the optimum subset of features.
arXiv Detail & Related papers (2020-04-21T01:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.