RSO: A Novel Reinforced Swarm Optimization Algorithm for Feature
Selection
- URL: http://arxiv.org/abs/2107.14199v1
- Date: Thu, 29 Jul 2021 17:38:04 GMT
- Title: RSO: A Novel Reinforced Swarm Optimization Algorithm for Feature
Selection
- Authors: Hritam Basak, Mayukhmali Das, Susmita Modak
- Abstract summary: In this paper, we propose a novel feature selection algorithm named Reinforced Swarm Optimization (RSO)
This algorithm embeds the widely used Bee Swarm Optimization (BSO) algorithm along with Reinforcement Learning (RL) to maximize the reward of a superior search agent and punish the inferior ones.
The proposed method is evaluated on 25 widely known UCI datasets containing a perfect blend of balanced and imbalanced data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Swarm optimization algorithms are widely used for feature selection before
data mining and machine learning applications. The metaheuristic
nature-inspired feature selection approaches are used for single-objective
optimization tasks, though the major problem is their frequent premature
convergence, leading to weak contribution to data mining. In this paper, we
propose a novel feature selection algorithm named Reinforced Swarm Optimization
(RSO) leveraging some of the existing problems in feature selection. This
algorithm embeds the widely used Bee Swarm Optimization (BSO) algorithm along
with Reinforcement Learning (RL) to maximize the reward of a superior search
agent and punish the inferior ones. This hybrid optimization algorithm is more
adaptive and robust with a good balance between exploitation and exploration of
the search space. The proposed method is evaluated on 25 widely known UCI
datasets containing a perfect blend of balanced and imbalanced data. The
obtained results are compared with several other popular and recent feature
selection algorithms with similar classifier configurations. The experimental
outcome shows that our proposed model outperforms BSO in 22 out of 25 instances
(88%). Moreover, experimental results also show that RSO performs the best
among all the methods compared in this paper in 19 out of 25 cases (76%),
establishing the superiority of our proposed method.
Related papers
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.
We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - The Firefighter Algorithm: A Hybrid Metaheuristic for Optimization Problems [3.2432648012273346]
The Firefighter Optimization (FFO) algorithm is a new hybrid metaheuristic for optimization problems.
To evaluate the performance of FFO, extensive experiments were conducted, wherein the FFO was examined against 13 commonly used optimization algorithms.
The results demonstrate that FFO achieves comparative performance and, in some scenarios, outperforms commonly adopted optimization algorithms in terms of the obtained fitness, time taken for exaction, and research space covered per unit of time.
arXiv Detail & Related papers (2024-06-01T18:38:59Z) - Enhancing Machine Learning Model Performance with Hyper Parameter
Optimization: A Comparative Study [0.0]
One of the most critical issues in machine learning is the selection of appropriate hyper parameters for training models.
Hyper parameter optimization (HPO) is a popular topic that artificial intelligence studies have focused on recently.
In this study, classical methods, such as grid, random search and Bayesian optimization, and population-based algorithms, such as genetic algorithms and particle swarm optimization, are discussed.
arXiv Detail & Related papers (2023-02-14T10:12:10Z) - An efficient hybrid classification approach for COVID-19 based on Harris
Hawks Optimization and Salp Swarm Optimization [0.0]
This study presents a hybrid binary version of the Harris Hawks Optimization algorithm (HHO) and Salp Swarm Optimization (SSA) for Covid-19 classification.
The proposed algorithm (HHOSSA) achieved 96% accuracy with the SVM, 98% and 98% accuracy with two classifiers.
arXiv Detail & Related papers (2022-12-25T19:52:18Z) - HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection [75.84584400866254]
We propose a new algorithm selector leveraging special forests, combining the strengths of both approaches while alleviating their weaknesses.
HARRIS' decisions are based on a forest model, whose trees are created based on optimized on a hybrid ranking and regression loss function.
arXiv Detail & Related papers (2022-10-31T14:06:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A
COVID-19 Case Study [1.6436293069942312]
The "Curse of Dimensionality" induced by the rapid development of information science might have a negative impact when dealing with big datasets.
We propose a variant of the sparrow search algorithm (SSA), called Tent L'evy flying sparrow search algorithm (TFSSA)
TFSSA is used to select the best subset of features in the packing pattern for classification purposes.
arXiv Detail & Related papers (2022-09-20T15:12:10Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem [0.9990687944474739]
This paper presents a powerful swarm intelligence meta-heuristic optimization algorithm called Dynamic Cat Swarm Optimization.
The proposed algorithm suggests a new method to provide a proper balance between these phases by modifying the selection scheme and the seeking mode of the algorithm.
optimization results show the effectiveness of the proposed algorithm, which ranks first compared to several well-known algorithms available in the literature.
arXiv Detail & Related papers (2021-04-27T19:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.