Masked and Swapped Sequence Modeling for Next Novel Basket
Recommendation in Grocery Shopping
- URL: http://arxiv.org/abs/2308.01308v1
- Date: Wed, 2 Aug 2023 17:52:37 GMT
- Title: Masked and Swapped Sequence Modeling for Next Novel Basket
Recommendation in Grocery Shopping
- Authors: Ming Li, Mozhdeh Ariannezhad, Andrew Yates, Maarten de Rijke
- Abstract summary: Next basket recommendation (NBR) is the task of predicting the next set of items based on a sequence of already purchased baskets.
We formulate the next novel basket recommendation (NNBR) task, i.e., the task of recommending a basket that only consists of novel items.
- Score: 59.52585406731807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Next basket recommendation (NBR) is the task of predicting the next set of
items based on a sequence of already purchased baskets. It is a recommendation
task that has been widely studied, especially in the context of grocery
shopping. In next basket recommendation (NBR), it is useful to distinguish
between repeat items, i.e., items that a user has consumed before, and explore
items, i.e., items that a user has not consumed before. Most NBR work either
ignores this distinction or focuses on repeat items. We formulate the next
novel basket recommendation (NNBR) task, i.e., the task of recommending a
basket that only consists of novel items, which is valuable for both real-world
application and NBR evaluation. We evaluate how existing NBR methods perform on
the NNBR task and find that, so far, limited progress has been made w.r.t. the
NNBR task. To address the NNBR task, we propose a simple bi-directional
transformer basket recommendation model (BTBR), which is focused on directly
modeling item-to-item correlations within and across baskets instead of
learning complex basket representations. To properly train BTBR, we propose and
investigate several masking strategies and training objectives: (i) item-level
random masking, (ii) item-level select masking, (iii) basket-level all masking,
(iv) basket-level explore masking, and (v) joint masking. In addition, an
item-basket swapping strategy is proposed to enrich the item interactions
within the same baskets. We conduct extensive experiments on three open
datasets with various characteristics. The results demonstrate the
effectiveness of BTBR and our masking and swapping strategies for the NNBR
task. BTBR with a properly selected masking and swapping strategy can
substantially improve NNBR performance.
Related papers
- Hypergraph Enhanced Knowledge Tree Prompt Learning for Next-Basket
Recommendation [50.55786122323965]
Next-basket recommendation (NBR) aims to infer the items in the next basket given the corresponding basket sequence.
HEKP4NBR transforms the knowledge graph (KG) into prompts, namely Knowledge Tree Prompt (KTP), to help PLM encode the Out-Of-Vocabulary (OOV) item IDs.
A hypergraph convolutional module is designed to build a hypergraph based on item similarities measured by an MoE model from multiple aspects.
arXiv Detail & Related papers (2023-12-26T02:12:21Z) - Zero-shot Item-based Recommendation via Multi-task Product Knowledge
Graph Pre-Training [106.85813323510783]
This paper presents a novel paradigm for the Zero-Shot Item-based Recommendation (ZSIR) task.
It pre-trains a model on product knowledge graph (PKG) to refine the item features from PLMs.
We identify three challenges for pre-training PKG, which are multi-type relations in PKG, semantic divergence between item generic information and relations and domain discrepancy from PKG to downstream ZSIR task.
arXiv Detail & Related papers (2023-05-12T17:38:24Z) - A Next Basket Recommendation Reality Check [48.29308926607474]
The goal of a next basket recommendation (NBR) system is to recommend items for the next basket for a user, based on the sequence of their prior baskets.
We provide a novel angle on the evaluation of next basket recommendation methods, centered on the distinction between repetition and exploration.
We propose a set of metrics that measure the repeat/explore ratio and performance of NBR models.
arXiv Detail & Related papers (2021-09-29T07:14:22Z) - Basket Recommendation with Multi-Intent Translation Graph Neural Network [59.00550319853681]
Basket recommendation(BR) is to recommend a ranking list of items to the current basket.
We propose a new framework named as textbfMulti-textbfIntent textbfTranslation textbfGraph textbfNeural textbfNetwork(textbfMITGNN)
arXiv Detail & Related papers (2020-10-22T03:52:00Z) - Modeling Personalized Item Frequency Information for Next-basket
Recommendation [63.94555438898309]
Next-basket recommendation (NBR) is prevalent in e-commerce and retail industry.
We argue that existing RNNs cannot directly capture item frequency information in the recommendation scenario.
We propose a simple item frequency based k-nearest neighbors (kNN) method to directly utilize these critical signals.
arXiv Detail & Related papers (2020-05-31T16:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.