SAFERec: Self-Attention and Frequency Enriched Model for Next Basket Recommendation
- URL: http://arxiv.org/abs/2412.14302v2
- Date: Fri, 20 Dec 2024 07:56:22 GMT
- Title: SAFERec: Self-Attention and Frequency Enriched Model for Next Basket Recommendation
- Authors: Oleg Lashinin, Denis Krasilnikov, Aleksandr Milogradskii, Marina Ananyeva,
- Abstract summary: Transformer-based approaches such as BERT4Rec and SASRec demonstrate strong performance in Next Item Recommendation (NIR) tasks.
Applying these architectures to Next-Basket Recommendation (NBR) tasks is challenging due to the vast number of possible item combinations in a basket.
This paper introduces SAFERec, a novel algorithm for NBR that enhances transformer-based architectures from NIR by item frequency information.
- Score: 41.94295877935867
- License:
- Abstract: Transformer-based approaches such as BERT4Rec and SASRec demonstrate strong performance in Next Item Recommendation (NIR) tasks. However, applying these architectures to Next-Basket Recommendation (NBR) tasks, which often involve highly repetitive interactions, is challenging due to the vast number of possible item combinations in a basket. Moreover, frequency-based methods such as TIFU-KNN and UP-CF still demonstrate strong performance in NBR tasks, frequently outperforming deep-learning approaches. This paper introduces SAFERec, a novel algorithm for NBR that enhances transformer-based architectures from NIR by incorporating item frequency information, consequently improving their applicability to NBR tasks. Extensive experiments on multiple datasets show that SAFERec outperforms all other baselines, specifically achieving an 8\% improvement in Recall@10.
Related papers
- A Reproducible Analysis of Sequential Recommender Systems [13.987953631479662]
SequentialEnsurer Systems (SRSs) have emerged as a highly efficient approach to recommendation systems.
Existing works exhibit shortcomings in replicability of results, leading to inconsistent statements across papers.
Our work fills these gaps by standardising data pre-processing and model implementations.
arXiv Detail & Related papers (2024-08-07T16:23:29Z) - UniRec: A Dual Enhancement of Uniformity and Frequency in Sequential Recommendations [13.654819858917332]
We propose UniRec, a novel bidirectional enhancement sequential recommendation method.
UniRec improves the representation of non-uniform sequences and less-frequent items.
To the best of our knowledge, UniRec is the first method to utilize the characteristics of uniformity and frequency for feature augmentation.
arXiv Detail & Related papers (2024-06-26T16:28:24Z) - Transformer-based Model for ASR N-Best Rescoring and Rewriting [4.906869033128613]
We propose a novel Transformer based model capable of rescoring and rewriting, by exploring full context of the N-best hypotheses in parallel.
We show that our Rescore+Rewrite model outperforms the Rescore-only baseline, and achieves up to an average 8.6% relative Word Error Rate (WER) reduction over the ASR system by itself.
arXiv Detail & Related papers (2024-06-12T13:39:44Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
We introduce a novel noisy self-training framework combined with synthetic queries.
Experimental results show that our method improves consistently over existing methods.
Our method is data efficient and outperforms competitive baselines.
arXiv Detail & Related papers (2023-11-27T06:19:50Z) - Masked and Swapped Sequence Modeling for Next Novel Basket
Recommendation in Grocery Shopping [59.52585406731807]
Next basket recommendation (NBR) is the task of predicting the next set of items based on a sequence of already purchased baskets.
We formulate the next novel basket recommendation (NNBR) task, i.e., the task of recommending a basket that only consists of novel items.
arXiv Detail & Related papers (2023-08-02T17:52:37Z) - Improving Sequential Recommendation Models with an Enhanced Loss
Function [9.573139673704766]
We develop an improved loss function for sequential recommendation models.
We conduct experiments on two influential open-source libraries.
We reproduce the results of the BERT4Rec model on the Beauty dataset.
arXiv Detail & Related papers (2023-01-03T07:18:54Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Being a Bit Frequentist Improves Bayesian Neural Networks [76.73339435080446]
We show that OOD-trained BNNs are competitive to, if not better than recent frequentist baselines.
This work provides strong baselines for future work in both Bayesian and frequentist UQ.
arXiv Detail & Related papers (2021-06-18T11:22:42Z) - Modeling Personalized Item Frequency Information for Next-basket
Recommendation [63.94555438898309]
Next-basket recommendation (NBR) is prevalent in e-commerce and retail industry.
We argue that existing RNNs cannot directly capture item frequency information in the recommendation scenario.
We propose a simple item frequency based k-nearest neighbors (kNN) method to directly utilize these critical signals.
arXiv Detail & Related papers (2020-05-31T16:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.