論文の概要: Careful Whisper -- leveraging advances in automatic speech recognition
for robust and interpretable aphasia subtype classification
- arxiv url: http://arxiv.org/abs/2308.01327v1
- Date: Wed, 2 Aug 2023 15:53:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-04 16:14:34.017632
- Title: Careful Whisper -- leveraging advances in automatic speech recognition
for robust and interpretable aphasia subtype classification
- Title(参考訳): Careful Whisper -- 頑健かつ解釈可能な失語サブタイプ分類のための自動音声認識の進歩を活用する
- Authors: Laurin Wagner, Mario Zusag, Theresa Bloder
- Abstract要約: 本稿では,音声記録から音声異常を同定し,音声障害の評価を支援するための完全自動アプローチを提案する。
Connectionist Temporal Classification (CTC) と encoder-decoder-based auto speech recognition model を組み合わせることで、リッチな音響およびクリーンな書き起こしを生成する。
そこで本研究では,これらの書き起こしから特徴を抽出し,健全な音声のプロトタイプを作成するために,いくつかの自然言語処理手法を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a fully automated approach for identifying speech
anomalies from voice recordings to aid in the assessment of speech impairments.
By combining Connectionist Temporal Classification (CTC) and
encoder-decoder-based automatic speech recognition models, we generate rich
acoustic and clean transcripts. We then apply several natural language
processing methods to extract features from these transcripts to produce
prototypes of healthy speech. Basic distance measures from these prototypes
serve as input features for standard machine learning classifiers, yielding
human-level accuracy for the distinction between recordings of people with
aphasia and a healthy control group. Furthermore, the most frequently occurring
aphasia types can be distinguished with 90% accuracy. The pipeline is directly
applicable to other diseases and languages, showing promise for robustly
extracting diagnostic speech biomarkers.
- Abstract(参考訳): 本稿では,音声録音から発声異常を完全自動検出し,音声障害の評価を支援する手法を提案する。
Connectionist Temporal Classification (CTC) と encoder-decoder-based auto speech recognition model を組み合わせることで、リッチな音響およびクリーンな書き起こしを生成する。
次に,これらのテキストから特徴を抽出する自然言語処理手法を適用し,健全な音声のプロトタイプを作成する。
これらのプロトタイプからの基本的な距離測定は、標準的な機械学習分類器の入力機能として機能し、失語症患者と健康管理グループとの区別のための人間レベルの精度を提供する。
さらに、最も頻度の高い失語型は90%の精度で区別できる。
このパイプラインは他の疾患や言語に直接適用でき、診断用バイオマーカーのロバストな抽出が期待できる。
関連論文リスト
- Self-supervised Speech Models for Word-Level Stuttered Speech Detection [66.46810024006712]
自己教師付き音声モデルを利用した単語レベルの発声音声検出モデルを提案する。
本評価は, 単語レベルの発声検出において, 従来の手法を超越していることを示す。
論文 参考訳(メタデータ) (2024-09-16T20:18:20Z) - Seq2seq for Automatic Paraphasia Detection in Aphasic Speech [14.686874756530322]
失語症は失語症の特徴である発話誤りであり、病気の重症度やサブタイプを評価する上で重要な信号である。
伝統的に、臨床医は言語サンプルの翻訳と分析によってパラファシアを手動で識別する。
本稿では,ASRと失語症検出の両方を行うために,エンドツーエンド(E2E)を訓練した新しいシーケンス・ツー・シーケンス(seq2seq)モデルを提案する。
論文 参考訳(メタデータ) (2023-12-16T18:22:37Z) - Automatic Disfluency Detection from Untranscribed Speech [25.534535098405602]
発声は、高頻度の不一致を特徴とする発声障害である。
自動逆流検出は、不安定な個人に対する治療計画を立案するのに役立ちます。
本研究では,フレームレベルの自動ディフルエンシ検出と分類のための言語,音響,マルチモーダル手法について検討する。
論文 参考訳(メタデータ) (2023-11-01T21:36:39Z) - Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
提案手法の新たなポイントは、大量のデータで訓練された音声表現から組込みベクトルを得るためにSSLモデルを直接利用することである。
この不整合埋め込みにより、未知話者の再生性能が向上し、異なる音声によるリズム伝達が実現される。
論文 参考訳(メタデータ) (2023-04-24T10:15:58Z) - Controllable speech synthesis by learning discrete phoneme-level
prosodic representations [53.926969174260705]
直感的な離散ラベルを用いたF0と持続時間に対する音素レベル韻律制御のための新しい手法を提案する。
複数話者音声データセットから音素レベルF0と持続時間の特徴を識別するために用いられる教師なし韻律クラスタリングプロセスを提案する。
論文 参考訳(メタデータ) (2022-11-29T15:43:36Z) - A unified one-shot prosody and speaker conversion system with
self-supervised discrete speech units [94.64927912924087]
既存のシステムは韻律と言語内容の相関を無視し、変換された音声の自然度を低下させる。
自己教師付き離散音声単位を言語表現として活用するカスケードモジュラーシステムを提案する。
実験により,本システムは,自然性,知性,話者伝達性,韻律伝達性において,従来の手法よりも優れていたことがわかった。
論文 参考訳(メタデータ) (2022-11-12T00:54:09Z) - The Far Side of Failure: Investigating the Impact of Speech Recognition
Errors on Subsequent Dementia Classification [8.032686410648274]
自然発話で検出される言語異常は、認知障害などの認知障害のスクリーニングなど、様々な臨床応用の可能性を示唆している。
自己教師付き学習(SSL)自動音声認識(ASR)モデルにおいて,臨床環境から抽出した難解な音声サンプルでは,有意な性能が得られない。
我々の重要な発見の1つは、パラドックス的に、比較的高いエラー率を持つASRシステムは、動詞の文字起こしに基づく分類よりも、より下流の分類精度の高い転写文を生成できるということである。
論文 参考訳(メタデータ) (2022-11-11T17:06:45Z) - End-to-end Speech-to-Punctuated-Text Recognition [23.44236710364419]
句読点は、音声認識結果の可読性にとって重要である。
従来の自動音声認識システムは句読点を生成しない。
本稿では,音声を入力とし,句読解テキストを出力するエンドツーエンドモデルを提案する。
論文 参考訳(メタデータ) (2022-07-07T08:58:01Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
本稿では,音声データに対するエンコーダ・デコーダモデルの両部分を事前学習するための,最初の自己教師型アプローチであるWav2Seqを紹介する。
我々は、コンパクトな離散表現として擬似言語を誘導し、自己教師付き擬似音声認識タスクを定式化する。
このプロセスは独自のものであり、低コストの第2段階のトレーニングとして適用することができる。
論文 参考訳(メタデータ) (2022-05-02T17:59:02Z) - Speaker Diarization with Lexical Information [59.983797884955]
本研究では,音声認識による語彙情報を活用した話者ダイアリゼーション手法を提案する。
本稿では,話者クラスタリングプロセスに単語レベルの話者回転確率を組み込んだ話者ダイアリゼーションシステムを提案し,全体的なダイアリゼーション精度を向上させる。
論文 参考訳(メタデータ) (2020-04-13T17:16:56Z) - Speech Enhancement using Self-Adaptation and Multi-Head Self-Attention [70.82604384963679]
本稿では,補助的話者認識機能を用いた音声強調のための自己適応手法について検討する。
テスト発話から直接適応に用いる話者表現を抽出する。
論文 参考訳(メタデータ) (2020-02-14T05:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。