A vision transformer-based framework for knowledge transfer from multi-modal to mono-modal lymphoma subtyping models
- URL: http://arxiv.org/abs/2308.01328v3
- Date: Wed, 29 May 2024 11:51:48 GMT
- Title: A vision transformer-based framework for knowledge transfer from multi-modal to mono-modal lymphoma subtyping models
- Authors: Bilel Guetarni, Feryal Windal, Halim Benhabiles, Marianne Petit, Romain Dubois, Emmanuelle Leteurtre, Dominique Collard,
- Abstract summary: Whole Slide Image (WSI) analysis using deep learning models has shown promising potential for cancer diagnosis.
We propose a vision transformer-based framework for distinguishing DLBCL cancer subtypes from high-resolution WSIs.
Our experimental study conducted on a lymphoma dataset of 157 patients shows the promising performance of our monomodal classification model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determining lymphoma subtypes is a crucial step for better patient treatment targeting to potentially increase their survival chances. In this context, the existing gold standard diagnosis method, which relies on gene expression technology, is highly expensive and time-consuming, making it less accessibility. Although alternative diagnosis methods based on IHC (immunohistochemistry) technologies exist (recommended by the WHO), they still suffer from similar limitations and are less accurate. Whole Slide Image (WSI) analysis using deep learning models has shown promising potential for cancer diagnosis, that could offer cost-effective and faster alternatives to existing methods. In this work, we propose a vision transformer-based framework for distinguishing DLBCL (Diffuse Large B-Cell Lymphoma) cancer subtypes from high-resolution WSIs. To this end, we introduce a multi-modal architecture to train a classifier model from various WSI modalities. We then leverage this model through a knowledge distillation process to efficiently guide the learning of a mono-modal classifier. Our experimental study conducted on a lymphoma dataset of 157 patients shows the promising performance of our mono-modal classification model, outperforming six recent state-of-the-art methods. In addition, the power-law curve, estimated on our experimental data, suggests that with more training data from a reasonable number of additional patients, our model could achieve competitive diagnosis accuracy with IHC technologies. Furthermore, the efficiency of our framework is confirmed through an additional experimental study on an external breast cancer dataset (BCI dataset).
Related papers
- Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Multi-omics data integration for early diagnosis of hepatocellular carcinoma (HCC) using machine learning [8.700808005009806]
We compare the performance of ensemble machine learning algorithms capable of late integration of multi-class data from different modalities.
Two boosted methods, PB-MVBoost and Adaboost with a soft vote were the overall best performing models.
arXiv Detail & Related papers (2024-09-20T09:38:02Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
We propose a novel deep learning network designed to accurately classify lung cancer subtype with multi-dimensional and multi-modality images.
The strength of the proposed model lies in its ability to dynamically process both paired CT-pathological image sets and independent CT image sets.
We also develop a contrastive constraint module, which quantitatively maps the cross-modality associations through network training.
arXiv Detail & Related papers (2024-07-18T01:42:00Z) - MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer [13.74067035373274]
We introduce a multi-modal heterogeneous graph-based conditional feature-guided diffusion model for lymph node metastasis diagnosis based on CT images.
We propose a masked relational representation learning strategy, aiming to uncover the latent prognostic correlations and priorities of primary tumor and lymph node image representations.
arXiv Detail & Related papers (2024-05-15T17:52:00Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis [10.133715767542386]
We propose a knowledge-driven and data-driven framework for lung disease diagnosis.
We formulate diagnosis rules according to authoritative clinical medicine guidelines and learn the weights of rules from text data.
A multimodal fusion consisting of text and image data is designed to infer the marginal probability of lung disease.
arXiv Detail & Related papers (2022-02-09T04:12:30Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.