Automated Machine Learning in the smart construction era:Significance
and accessibility for industrial classification and regression tasks
- URL: http://arxiv.org/abs/2308.01517v1
- Date: Thu, 3 Aug 2023 03:17:22 GMT
- Title: Automated Machine Learning in the smart construction era:Significance
and accessibility for industrial classification and regression tasks
- Authors: Rui Zhao, Zhongze Yang, Dong Liang and Fan Xue
- Abstract summary: This paper explores the application of automated machine learning (AutoML) techniques to the construction industry.
By leveraging AutoML, construction professionals can now utilize software to process industrial data into ML models that assist in project management.
- Score: 6.206133097433925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the application of automated machine learning (AutoML)
techniques to the construction industry, a sector vital to the global economy.
Traditional ML model construction methods were complex, time-consuming, reliant
on data science expertise, and expensive. AutoML shows the potential to
automate many tasks in ML construction and to create outperformed ML models.
This paper aims to verify the feasibility of applying AutoML to industrial
datasets for the smart construction domain, with a specific case study
demonstrating its effectiveness. Two data challenges that were unique to
industrial construction datasets are focused on, in addition to the normal
steps of dataset preparation, model training, and evaluation. A real-world
application case of construction project type prediction is provided to
illustrate the accessibility of AutoML. By leveraging AutoML, construction
professionals without data science expertise can now utilize software to
process industrial data into ML models that assist in project management. The
findings in this paper may bridge the gap between data-intensive smart
construction practices and the emerging field of AutoML, encouraging its
adoption for improved decision-making, project outcomes, and efficiency
Related papers
- Creation and Evaluation of a Food Product Image Dataset for Product Property Extraction [39.58317527488534]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2024-11-15T21:29:05Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Assessing the Use of AutoML for Data-Driven Software Engineering [10.40771687966477]
AutoML promises to automate the building of end-to-end AI/ML pipelines.
Despite the growing interest and high expectations, there is a dearth of information about the extent to which AutoML is currently adopted.
arXiv Detail & Related papers (2023-07-20T11:14:24Z) - Automated Machine Learning for Remaining Useful Life Predictions [15.02669353424867]
This paper introduces AutoRUL, an AutoML-driven end-to-end approach for automatic RUL predictions.
We show that AutoML provides a viable alternative to hand-crafted data-driven RUL predictions.
arXiv Detail & Related papers (2023-06-21T12:15:57Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Construction material classification on imbalanced datasets for
construction monitoring automation using Vision Transformer (ViT)
architecture [0.0]
The scope of automation in construction includes a wide range of stages, and monitoring construction projects is no exception.
In this paper, a novel deep learning architecture is utilized, called Vision Transformer (ViT), for detecting and classifying construction materials.
The achieved results revealed an accuracy of 100 percent in all parameters and also in each material category.
arXiv Detail & Related papers (2021-08-21T15:29:56Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.