MA-FSAR: Multimodal Adaptation of CLIP for Few-Shot Action Recognition
- URL: http://arxiv.org/abs/2308.01532v2
- Date: Fri, 04 Oct 2024 06:43:47 GMT
- Title: MA-FSAR: Multimodal Adaptation of CLIP for Few-Shot Action Recognition
- Authors: Jiazheng Xing, Chao Xu, Mengmeng Wang, Guang Dai, Baigui Sun, Yong Liu, Jingdong Wang, Jian Zhao,
- Abstract summary: We introduce MA-FSAR, a framework that employs the Fine-Tuning (PEFT) technique to enhance the CLIP visual encoder in terms of action-related temporal and semantic representations.
In addition to these token-level designs, we propose a prototype-level text-guided construction module to further enrich the temporal and semantic characteristics of video prototypes.
- Score: 41.78245303513613
- License:
- Abstract: Applying large-scale vision-language pre-trained models like CLIP to few-shot action recognition (FSAR) can significantly enhance both performance and efficiency. While several studies have recognized this advantage, most of them resort to full-parameter fine-tuning to make CLIP's visual encoder adapt to the FSAR data, which not only costs high computations but also overlooks the potential of the visual encoder to engage in temporal modeling and focus on targeted semantics directly. To tackle these issues, we introduce MA-FSAR, a framework that employs the Parameter-Efficient Fine-Tuning (PEFT) technique to enhance the CLIP visual encoder in terms of action-related temporal and semantic representations. Our solution involves a Fine-grained Multimodal Adaptation, which is different from the previous attempts of PEFT in regular action recognition. Specifically, we first insert a Global Temporal Adaptation that only receives the class token to capture global motion cues efficiently. Then these outputs integrate with visual tokens to enhance local temporal dynamics by a Local Multimodal Adaptation, which incorporates text features unique to the FSAR support set branch to highlight fine-grained semantics related to actions. In addition to these token-level designs, we propose a prototype-level text-guided construction module to further enrich the temporal and semantic characteristics of video prototypes. Extensive experiments demonstrate our superior performance in various tasks using minor trainable parameters.
Related papers
- EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning [116.75939193785143]
Contrastive learning (CL) for Vision Transformers (ViTs) in image domains has achieved performance comparable to CL for traditional convolutional backbones.
In 3D point cloud pretraining with ViTs, masked autoencoder (MAE) modeling remains dominant.
arXiv Detail & Related papers (2024-07-08T12:28:56Z) - FineCLIPER: Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs [5.35588281968644]
We propose a novel framework, named Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs (Fine CLIPER)
Our Fine CLIPER achieves tunable SOTA performance on the DFEW, FERV39k, and MAFW datasets with few parameters.
arXiv Detail & Related papers (2024-07-02T10:55:43Z) - M2-CLIP: A Multimodal, Multi-task Adapting Framework for Video Action
Recognition [39.92547393649842]
We introduce a novel Multimodal, Multi-task CLIP adapting framework named name to address these challenges.
We demonstrate exceptional performance in supervised learning while maintaining strong generalization in zero-shot scenarios.
arXiv Detail & Related papers (2024-01-22T02:03:31Z) - Concept-Guided Prompt Learning for Generalization in Vision-Language
Models [33.361744437967126]
We propose Concept-Guided Prompt Learning for vision-language models.
We leverage the well-learned knowledge of Contrastive Language-Image Pretraining to create a visual concept cache.
In order to refine the text features, we develop a projector that transforms multi-level visual features into text features.
arXiv Detail & Related papers (2024-01-15T04:04:47Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Learning Visual Representation from Modality-Shared Contrastive
Language-Image Pre-training [88.80694147730883]
We investigate a variety of Modality-Shared Contrastive Language-Image Pre-training (MS-CLIP) frameworks.
In studied conditions, we observe that a mostly unified encoder for vision and language signals outperforms all other variations that separate more parameters.
Our approach outperforms vanilla CLIP by 1.6 points in linear probing on a collection of 24 downstream vision tasks.
arXiv Detail & Related papers (2022-07-26T05:19:16Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.