Correcting biased noise using Gottesman-Kitaev-Preskill repetition code
with noisy ancilla
- URL: http://arxiv.org/abs/2308.01549v1
- Date: Thu, 3 Aug 2023 06:14:43 GMT
- Title: Correcting biased noise using Gottesman-Kitaev-Preskill repetition code
with noisy ancilla
- Authors: Zhifei Li and Daiqin Su
- Abstract summary: Gottesman-Kitaev-Preskill (GKP) code is proposed to correct small displacement error in phase space.
If noise in phase space is biased, square-lattice GKP code can be ancillaryd with XZZX surface code or repetition code.
We study the performance of GKP repetition codes with physical ancillary GKP qubits in correcting biased noise.
- Score: 0.6802401545890963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concatenation of a bosonic code with a qubit code is one of the promising
ways to achieve fault-tolerant quantum computation. As one of the most
important bosonic codes, Gottesman-Kitaev-Preskill (GKP) code is proposed to
correct small displacement error in phase space. If the noise in phase space is
biased, square-lattice GKP code can be concatenated with XZZX surface code or
repetition code that promises a high fault-tolerant threshold to suppress the
logical error. In this work, we study the performance of GKP repetition codes
with physical ancillary GKP qubits in correcting biased noise. We find that
there exists a critical value of noise variance for the ancillary GKP qubit
such that the logical Pauli error rate decreases when increasing the code size.
Furthermore, one round of GKP error correction has to be performed before
concatenating with repetition code. Our study paves the way for practical
implementation of error correction by concatenating GKP code with low-level
qubit codes.
Related papers
- Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Robust suppression of noise propagation in GKP error-correction [0.0]
Recently reported generation and error-correction of GKP qubits holds great promise for the future of quantum computing.
We develop efficient numerical methods to optimize our protocol parameters.
Our approach circumvents the main roadblock towards fault-tolerant quantum computation with GKP qubits.
arXiv Detail & Related papers (2023-02-23T15:21:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Biased Gottesman-Kitaev-Preskill repetition code [0.0]
Continuous-variable quantum computing architectures based upon the Gottesmann-Kitaev-Preskill (GKP) encoding have emerged as a promising candidate.
We study the code-capacity behaviour of a rectangular-lattice GKP encoding with a repetition code under an isotropic Gaussian displacement channel.
arXiv Detail & Related papers (2022-12-21T22:56:05Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Low overhead fault-tolerant quantum error correction with the
surface-GKP code [60.44022726730614]
We propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qubits instead of bare two-dimensional qubits.
We show that a low logical failure rate $p_L 10-7$ can be achieved with moderate hardware requirements.
arXiv Detail & Related papers (2021-03-11T23:07:52Z) - Efficient Concatenated Bosonic Code for Additive Gaussian Noise [0.0]
Bosonic codes offer noise resilience for quantum information processing.
We propose using a Gottesman-Kitaev-Preskill code to detect discard error-prone qubits and a quantum parity code to handle residual errors.
Our work may have applications in a wide range of quantum computation and communication scenarios.
arXiv Detail & Related papers (2021-02-02T08:01:30Z) - Continuous-variable error correction for general Gaussian noises [5.372221197181905]
We develop a theory framework to enable the efficient calculation of the noise standard deviation after the error correction.
Our code provides the optimal scaling of the residue noise standard deviation with the number of modes.
arXiv Detail & Related papers (2021-01-06T23:28:01Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z) - Enhanced noise resilience of the surface-GKP code via designed bias [0.0]
We study the code obtained by concatenating the standard single-mode Gottesman-Kitaev-Preskill (GKP) code with the surface code.
We show that the noise tolerance of this surface-GKP code with respect to (Gaussian) displacement errors improves when a single-mode squeezing unitary is applied to each mode.
arXiv Detail & Related papers (2020-04-01T16:08:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.