論文の概要: Motion Planning Diffusion: Learning and Planning of Robot Motions with Diffusion Models
- arxiv url: http://arxiv.org/abs/2308.01557v2
- Date: Tue, 26 Mar 2024 06:50:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:20:23.373839
- Title: Motion Planning Diffusion: Learning and Planning of Robot Motions with Diffusion Models
- Title(参考訳): 運動計画拡散:拡散モデルを用いたロボット運動の学習と計画
- Authors: Joao Carvalho, An T. Le, Mark Baierl, Dorothea Koert, Jan Peters,
- Abstract要約: 新しい計画問題の先駆者として軌道生成モデルを学習することが極めて望ましい。
本研究では,移動計画問題のブートストラッピングに先立って,学習拡散モデルを提案する。
本研究では,ロボット運動の高次元軌跡分布を符号化する拡散モデルについて検討した。
- 参考スコア(独自算出の注目度): 14.171207239507789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning priors on trajectory distributions can help accelerate robot motion planning optimization. Given previously successful plans, learning trajectory generative models as priors for a new planning problem is highly desirable. Prior works propose several ways on utilizing this prior to bootstrapping the motion planning problem. Either sampling the prior for initializations or using the prior distribution in a maximum-a-posterior formulation for trajectory optimization. In this work, we propose learning diffusion models as priors. We then can sample directly from the posterior trajectory distribution conditioned on task goals, by leveraging the inverse denoising process of diffusion models. Furthermore, diffusion has been recently shown to effectively encode data multimodality in high-dimensional settings, which is particularly well-suited for large trajectory dataset. To demonstrate our method efficacy, we compare our proposed method - Motion Planning Diffusion - against several baselines in simulated planar robot and 7-dof robot arm manipulator environments. To assess the generalization capabilities of our method, we test it in environments with previously unseen obstacles. Our experiments show that diffusion models are strong priors to encode high-dimensional trajectory distributions of robot motions.
- Abstract(参考訳): 軌道分布の事前学習は、ロボットの運動計画最適化を加速するのに役立ちます。
これまで成功した計画を考えると、新しい計画問題の先駆けとして軌道生成モデルを学習することが極めて望ましい。
先行研究は、運動計画問題をブートストラップする前にこれを利用するいくつかの方法を提案する。
軌道最適化のための最大位置定式化において、初期化前をサンプリングするか、事前分布を使用するかのどちらかである。
本研究では,学習拡散モデルを先行モデルとして提案する。
次に,拡散モデルの逆復調過程を活用することにより,タスク目標に規定された後部軌道分布から直接サンプリングすることができる。
さらに、拡散は高次元設定におけるデータ多様性を効果的に符号化することが最近示されており、これは特に大きな軌跡データセットに適している。
提案手法の有効性を実証するために,提案手法である運動計画拡散法を,模擬平面ロボットと7ドアロボットアームマニピュレータ環境におけるいくつかのベースラインと比較した。
提案手法の一般化能力を評価するため,従来見つからなかった障害物のある環境で実験を行った。
本研究では,ロボット運動の高次元軌跡分布を符号化する拡散モデルについて検討した。
関連論文リスト
- TrajDiffuse: A Conditional Diffusion Model for Environment-Aware Trajectory Prediction [16.188078087197106]
本稿では,新しい条件付き拡散モデルを用いた計画に基づく軌道予測手法であるTrajDiffuseを提案する。
本研究では, 軌道予測問題を不特定課題として定式化し, 拡散過程の地図に基づくガイダンス項を設計する。
TrajDiffuseは、環境制約にほぼ完全に準拠しながら、SOTAの正確さと多様性を一致または超過する軌道予測を生成することができる。
論文 参考訳(メタデータ) (2024-10-14T17:59:03Z) - Multi-Robot Motion Planning with Diffusion Models [22.08293753545732]
衝突のないマルチロボット軌道を生成する手法を提案する。
我々のアルゴリズムは、学習した拡散モデルと古典的な検索に基づく手法を組み合わせる。
大規模環境における複数拡散モデルの構築方法について述べる。
論文 参考訳(メタデータ) (2024-10-04T01:31:13Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
複数モデルの予測に基づく軌道予測に適用可能な新しいサンプリング手法を提案する。
まず、予測確率に基づく従来のサンプリングは、モデル間のアライメントの欠如により性能を低下させることができることを示す。
基礎学習者として最先端モデルを用いて,最適軌道サンプリングのための多種多様な効果的なアンサンブルを構築した。
論文 参考訳(メタデータ) (2024-09-16T09:03:28Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
拡散モデルは、自律運転における共同軌道予測と制御可能な生成を約束する。
最適ガウス拡散(OGD)と推定クリーンマニフォールド(ECM)誘導を導入する。
提案手法は生成過程の合理化を図り,計算オーバーヘッドを低減した実用的な応用を実現する。
論文 参考訳(メタデータ) (2024-08-01T17:59:59Z) - Align Your Steps: Optimizing Sampling Schedules in Diffusion Models [63.927438959502226]
拡散モデル(DM)は、視覚領域以降における最先端の生成モデリングアプローチとして確立されている。
DMの重大な欠点は、サンプリング速度の遅いことであり、大規模なニューラルネットワークによる多くのシーケンシャルな関数評価に依存している。
本稿では,DMのサンプリングスケジュールを高品質な出力に最適化する汎用的,原理的な手法を提案する。
論文 参考訳(メタデータ) (2024-04-22T18:18:41Z) - Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous Driving and Zero-Shot Instruction Following [21.81411085058986]
Reward-gradient guided denoisingは、微分可能報酬関数と拡散モデルによって捕捉されたデータ分布下での確率の両方を最大化する軌道を生成する。
そこで我々は,勾配のない最適化と軌道デノゲーションを組み合わせたDiffusionESを提案する。
DiffusionESは、自動運転のための確立されたクローズドループ計画ベンチマークであるnuPlan上で、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-02-09T17:18:33Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
本稿では,3次元生成タスクの拡散先行性向上を目的とした統合フレームワークを提案する。
拡散先行と拡散モデルの訓練手順の相違を同定し、3次元生成の質を著しく損なう。
論文 参考訳(メタデータ) (2023-12-08T03:55:34Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。