Photonic entanglement with accelerated light
- URL: http://arxiv.org/abs/2308.01764v4
- Date: Thu, 11 Apr 2024 16:57:30 GMT
- Title: Photonic entanglement with accelerated light
- Authors: R. C. Souza Pimenta, G. H. dos Santos, A. B. Barreto, L. C. Celeri, P. H. Souto Ribeiro,
- Abstract summary: We show that acceleration does not affect entanglement significantly, under ideal conditions.
The scheme introduced can be useful in the understanding of processes in the boundary between gravitation and quantum physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accelerated light has been demonstrated with laser light and diffraction. Within the diffracting field it is possible to identify a portion that carries most of the beam energy, which propagates in a curved trajectory as it would have been accelerated by a gravitational field for instance. Here, we analyze the effects of this kind of acceleration over the entanglement between twin beams produced in spontaneous parametric down-conversion. Our results show that acceleration does not affect entanglement significantly, under ideal conditions. The optical scheme introduced can be useful in the understanding of processes in the boundary between gravitation and quantum physics.
Related papers
- A revision of the forces exerted in the Rayleigh regime by a tighlty
focused optical vortex tweezer [0.0]
When the laser light is strongly focused, but still paraxial, its e/m field is characterized by a longitudinal component.
We show that this term is responsible for considerable modifications in the magnitude of the various components.
arXiv Detail & Related papers (2023-11-07T10:00:56Z) - Atomic diffraction from single-photon transitions in gravity and
Standard-Model extensions [49.26431084736478]
We study single-photon transitions, both magnetically-induced and direct ones, in gravity and Standard-Model extensions.
We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect.
arXiv Detail & Related papers (2023-09-05T08:51:42Z) - Factorized Inverse Path Tracing for Efficient and Accurate
Material-Lighting Estimation [97.0195314255101]
Inverse path tracing is expensive to compute, and ambiguities exist between reflection and emission.
Our Factorized Inverse Path Tracing (FIPT) addresses these challenges by using a factored light transport formulation.
Our algorithm enables accurate material and lighting optimization faster than previous work, and is more effective at resolving ambiguities.
arXiv Detail & Related papers (2023-04-12T07:46:05Z) - Special Theory of Relativity for a Graded Index Fibre [0.0]
We consider how light is characterised in a material, where the speed of light is different from that in a vacuum.
The wavelength in the moving frame changes from the red-shift to the blue-shift upon increasing the speed of the frame.
The corresponding energy of the light also changes sign from positive to negative, while momentum is always positive.
arXiv Detail & Related papers (2023-03-30T03:40:40Z) - Measuring space-time curvature using maximally path-entangled quantum
states [0.0]
gravitational aspects of quantum experiments performed so far can be explained either within Newtonian gravity or by Einstein's equivalence principle.
We show that the entanglement-induced increase in sensitivity also holds for gravitationally-induced phases in Mach-Zehnder interferometers.
arXiv Detail & Related papers (2022-02-25T08:50:58Z) - Quantum effects in rotating reference frames [0.0]
We consider the time delay of interfering single photons oppositely traveling in the Kerr metric of a rotating massive object.
In quantum mechanics, the loss in visibility due to the indistinguishability of interfering photons is directly related to the time delay.
arXiv Detail & Related papers (2022-02-11T00:44:36Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Fractional Schr\"odinger equation in gravitational optics [91.3755431537592]
This paper addresses issues surrounding the concept of fractional quantum mechanics, related to lights propagation in inhomogeneous nonlinear media.
We have also concerned with linear and nonlinear Airy beam accelerations in flat and curved spaces and fractal photonics.
arXiv Detail & Related papers (2021-01-28T10:45:21Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.