Factorized Inverse Path Tracing for Efficient and Accurate
Material-Lighting Estimation
- URL: http://arxiv.org/abs/2304.05669v2
- Date: Wed, 23 Aug 2023 20:52:27 GMT
- Title: Factorized Inverse Path Tracing for Efficient and Accurate
Material-Lighting Estimation
- Authors: Liwen Wu, Rui Zhu, Mustafa B. Yaldiz, Yinhao Zhu, Hong Cai, Janarbek
Matai, Fatih Porikli, Tzu-Mao Li, Manmohan Chandraker, Ravi Ramamoorthi
- Abstract summary: Inverse path tracing is expensive to compute, and ambiguities exist between reflection and emission.
Our Factorized Inverse Path Tracing (FIPT) addresses these challenges by using a factored light transport formulation.
Our algorithm enables accurate material and lighting optimization faster than previous work, and is more effective at resolving ambiguities.
- Score: 97.0195314255101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse path tracing has recently been applied to joint material and lighting
estimation, given geometry and multi-view HDR observations of an indoor scene.
However, it has two major limitations: path tracing is expensive to compute,
and ambiguities exist between reflection and emission. Our Factorized Inverse
Path Tracing (FIPT) addresses these challenges by using a factored light
transport formulation and finds emitters driven by rendering errors. Our
algorithm enables accurate material and lighting optimization faster than
previous work, and is more effective at resolving ambiguities. The exhaustive
experiments on synthetic scenes show that our method (1) outperforms
state-of-the-art indoor inverse rendering and relighting methods particularly
in the presence of complex illumination effects; (2) speeds up inverse path
tracing optimization to less than an hour. We further demonstrate robustness to
noisy inputs through material and lighting estimates that allow plausible
relighting in a real scene. The source code is available at:
https://github.com/lwwu2/fipt
Related papers
- Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering [62.92985004295714]
We present a method that avoids approximations that introduce bias into the renderings and, more importantly, the gradients used for optimization.
We show that by removing these biases our approach improves the generality of radiance cache based inverse rendering, as well as increasing quality in the presence of challenging light transport effects such as specular reflections.
arXiv Detail & Related papers (2024-09-09T17:59:57Z) - MIRReS: Multi-bounce Inverse Rendering using Reservoir Sampling [17.435649250309904]
We present MIRReS, a novel two-stage inverse rendering framework.
Our method extracts an explicit geometry (triangular mesh) in stage one, and introduces a more realistic physically-based inverse rendering model.
Our method effectively estimates indirect illumination, including self-shadowing and internal reflections.
arXiv Detail & Related papers (2024-06-24T07:00:57Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to factorize the scene into material properties, light, and geometry.
We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision.
We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport.
arXiv Detail & Related papers (2023-12-08T16:05:15Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - Modeling Indirect Illumination for Inverse Rendering [31.734819333921642]
In this paper, we propose a novel approach to efficiently recovering spatially-varying indirect illumination.
The key insight is that indirect illumination can be conveniently derived from the neural radiance field learned from input images.
Experiments on both synthetic and real data demonstrate the superior performance of our approach compared to previous work.
arXiv Detail & Related papers (2022-04-14T09:10:55Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
Differentiable geometric computation has received increasing interest for image-based inverse problems.
We propose an efficient yet efficient approach for differentiable visibility and soft shadow computation.
As our formulation is differentiable, it can be used to solve inverse problems such as texture, illumination, rigid pose, and deformation recovery from images.
arXiv Detail & Related papers (2021-04-01T09:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.