Deep Neural Networks Fused with Textures for Image Classification
- URL: http://arxiv.org/abs/2308.01813v2
- Date: Sun, 31 Mar 2024 12:27:16 GMT
- Title: Deep Neural Networks Fused with Textures for Image Classification
- Authors: Asish Bera, Debotosh Bhattacharjee, Mita Nasipuri,
- Abstract summary: Fine-grained image classification is a challenging task in computer vision.
We propose a fusion approach to address FGIC by combining global texture with local patch-based information.
Our method has attained better classification accuracy over existing methods with notable margins.
- Score: 20.58839604333332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-grained image classification (FGIC) is a challenging task in computer vision for due to small visual differences among inter-subcategories, but, large intra-class variations. Deep learning methods have achieved remarkable success in solving FGIC. In this paper, we propose a fusion approach to address FGIC by combining global texture with local patch-based information. The first pipeline extracts deep features from various fixed-size non-overlapping patches and encodes features by sequential modelling using the long short-term memory (LSTM). Another path computes image-level textures at multiple scales using the local binary patterns (LBP). The advantages of both streams are integrated to represent an efficient feature vector for image classification. The method is tested on eight datasets representing the human faces, skin lesions, food dishes, marine lives, etc. using four standard backbone CNNs. Our method has attained better classification accuracy over existing methods with notable margins.
Related papers
- Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Improving Pixel-based MIM by Reducing Wasted Modeling Capability [77.99468514275185]
We propose a new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.
To the best of our knowledge, we are the first to systematically investigate multi-level feature fusion for isotropic architectures.
Our method yields significant performance gains, such as 1.2% on fine-tuning, 2.8% on linear probing, and 2.6% on semantic segmentation.
arXiv Detail & Related papers (2023-08-01T03:44:56Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
Image-level weakly-supervised segmentation (WSSS) reduces the usually vast data annotation cost by surrogate segmentation masks during training.
Our work is based on two techniques for improving CAMs; importance sampling, which is a substitute for GAP, and the feature similarity loss.
We reformulate both techniques based on binomial posteriors of multiple independent binary problems.
This has two benefits; their performance is improved and they become more general, resulting in an add-on method that can boost virtually any WSSS method.
arXiv Detail & Related papers (2023-04-05T17:43:57Z) - HiFuse: Hierarchical Multi-Scale Feature Fusion Network for Medical
Image Classification [16.455887856811465]
This paper proposes a three-branch hierarchical multi-scale feature fusion network structure termed as HiFuse for medical image classification.
The accuracy of our proposed model on the ISIC dataset is 7.6% higher than baseline, 21.5% on the Covid-19 dataset, and 10.4% on the Kvasir dataset.
arXiv Detail & Related papers (2022-09-21T09:30:20Z) - Multilayer deep feature extraction for visual texture recognition [0.0]
This paper is focused on improving the accuracy of convolutional neural networks in texture classification.
It is done by extracting features from multiple convolutional layers of a pretrained neural network and aggregating such features using Fisher vector.
We verify the effectiveness of our method on texture classification of benchmark datasets, as well as on a practical task of Brazilian plant species identification.
arXiv Detail & Related papers (2022-08-22T03:53:43Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
We propose a new segmentation model that combines convolutional neural networks with deep transformers.
Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-06-20T12:03:54Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Gigapixel Histopathological Image Analysis using Attention-based Neural
Networks [7.1715252990097325]
We propose a CNN structure consisting of a compressing path and a learning path.
Our method integrates both global and local information, is flexible with regard to the size of the input images and only requires weak image-level labels.
arXiv Detail & Related papers (2021-01-25T10:18:52Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.