Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers
- URL: http://arxiv.org/abs/2206.09731v2
- Date: Wed, 22 Jun 2022 06:08:03 GMT
- Title: Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers
- Authors: Hasan AlMarzouqi and Lyes Saad Saoud
- Abstract summary: We propose a new segmentation model that combines convolutional neural networks with deep transformers.
Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.
- Score: 5.177947445379688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation necessitates approaches that learn high-level
characteristics while dealing with enormous amounts of data. Convolutional
neural networks (CNNs) can learn unique and adaptive features to achieve this
aim. However, due to the large size and high spatial resolution of remote
sensing images, these networks cannot analyze an entire scene efficiently.
Recently, deep transformers have proven their capability to record global
interactions between different objects in the image. In this paper, we propose
a new segmentation model that combines convolutional neural networks with
transformers, and show that this mixture of local and global feature extraction
techniques provides significant advantages in remote sensing segmentation. In
addition, the proposed model includes two fusion layers that are designed to
represent multi-modal inputs and output of the network efficiently. The input
fusion layer extracts feature maps summarizing the relationship between image
content and elevation maps (DSM). The output fusion layer uses a novel
multi-task segmentation strategy where class labels are identified using
class-specific feature extraction layers and loss functions. Finally, a
fast-marching method is used to convert all unidentified class labels to their
closest known neighbors. Our results demonstrate that the proposed methodology
improves segmentation accuracy compared to state-of-the-art techniques.
Related papers
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method.
Most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images.
We propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently.
arXiv Detail & Related papers (2024-10-01T18:22:34Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - SENetV2: Aggregated dense layer for channelwise and global
representations [0.0]
We introduce a novel aggregated multilayer perceptron, a multi-branch dense layer, within the Squeeze residual module.
This fusion enhances the network's ability to capture channel-wise patterns and have global knowledge.
We conduct extensive experiments on benchmark datasets to validate the model and compare them with established architectures.
arXiv Detail & Related papers (2023-11-17T14:10:57Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - Inertial Sensor Data To Image Encoding For Human Action Recognition [0.0]
Convolutional Neural Networks (CNNs) are successful deep learning models in the field of computer vision.
In this paper, we use 4 types of spatial domain methods for transforming inertial sensor data to activity images.
For creating a multimodal fusion framework, we made each type of activity images multimodal by convolving with two spatial domain filters.
arXiv Detail & Related papers (2021-05-28T01:22:52Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
We present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation.
We used ResNet based feature extractor, dilated convolutional layers in downsampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them.
A new attention module is proposed to encode more contextual information and enhance the receptive field of the network.
arXiv Detail & Related papers (2020-06-30T20:19:09Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.