Learning Regionalization using Accurate Spatial Cost Gradients within a Differentiable High-Resolution Hydrological Model: Application to the French Mediterranean Region
- URL: http://arxiv.org/abs/2308.02040v2
- Date: Mon, 8 Jul 2024 20:08:43 GMT
- Title: Learning Regionalization using Accurate Spatial Cost Gradients within a Differentiable High-Resolution Hydrological Model: Application to the French Mediterranean Region
- Authors: Ngo Nghi Truyen Huynh, Pierre-André Garambois, François Colleoni, Benjamin Renard, Hélène Roux, Julie Demargne, Maxime Jay-Allemand, Pierre Javelle,
- Abstract summary: Estimating distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem.
This paper introduces a Hybrid Assimilation and Regionalization (HDA-PR) approach incorporating learnable regionalization mappings.
Results highlight a strong regionalization of HDA-PR especially in the most challenging upstream-to-downstream extrapolation scenario.
- Score: 0.18139022013189662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA-PR) approach incorporating learnable regionalization mappings, based on either multi-linear regressions or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous datasets across extensive spatio-temporal computational domains within a high-dimensional regionalization context, using accurate adjoint-based gradients. The inverse problem is tackled with a multi-gauge calibration cost function accounting for information from multiple observation sites. HDA-PR was tested on high-resolution, hourly and kilometric regional modeling of 126 flash-flood-prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA-PR especially in the most challenging upstream-to-downstream extrapolation scenario with ANN, achieving median Nash-Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio-temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. ANN enables to learn a non-linear descriptors-to-parameters mapping which provides better model controllability than a linear mapping for complex calibration cases.
Related papers
- RegionGCN: Spatial-Heterogeneity-Aware Graph Convolutional Networks [8.132751508556078]
We propose to model spatial process heterogeneity at the regional level rather than at the individual level.
Our proposed spatial-heterogeneity-aware graph convolutional network, named RegionGCN, is applied to the spatial prediction of county-level vote share in the 2016 US presidential election.
arXiv Detail & Related papers (2025-01-29T12:09:01Z) - Knowledge Distillation and Enhanced Subdomain Adaptation Using Graph Convolutional Network for Resource-Constrained Bearing Fault Diagnosis [0.0]
We propose a progressive knowledge distillation framework that transfers knowledge from a complex teacher model to a compact and efficient student model.
We introduce Enhanced Local Maximum Mean Squared Discrepancy (ELMMSD), which leverages mean and variance statistics in the Reproducing Kernel Hilbert Space (RKHS) and incorporates a priori probability distributions between labels.
arXiv Detail & Related papers (2025-01-13T10:05:47Z) - HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks [7.06787067270941]
The integration of hyperspectral imaging (HSI) and LiDAR data within new linear feature spaces offers a promising solution to the challenges posed by the high-dimensionality and redundancy inherent in HSIs.
This study introduces a dual linear fused space framework that capitalizes on bidirectional reversed convolutional neural network (CNN) pathways, coupled with a specialized spatial analysis block.
The proposed method not only enhances data processing and classification accuracy, but also mitigates the computational burden typically associated with advanced models such as Transformers.
arXiv Detail & Related papers (2024-11-30T01:08:08Z) - Stability and Generalization for Distributed SGDA [70.97400503482353]
We propose the stability-based generalization analytical framework for Distributed-SGDA.
We conduct a comprehensive analysis of stability error, generalization gap, and population risk across different metrics.
Our theoretical results reveal the trade-off between the generalization gap and optimization error.
arXiv Detail & Related papers (2024-11-14T11:16:32Z) - SurfGNN: A robust surface-based prediction model with interpretability for coactivation maps of spatial and cortical features [17.457540767016223]
Current brain surface-based prediction models often overlook the variability of regional attributes at the cortical feature level.
In this work, we consider the cortical surface mesh as a sparse graph and propose an interpretable prediction model-Surface Graph Neural Network (SurfGNN)
SurfGNN employs topology-sampling learning (TSL) and region-specific learning (RSL) structures to manage individual cortical features at both lower and higher scales of the surface mesh.
arXiv Detail & Related papers (2024-11-05T08:39:53Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-independent and identically distributed (non-IID) datasets.
A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented.
Solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties.
arXiv Detail & Related papers (2024-03-05T17:49:09Z) - Neural variational Data Assimilation with Uncertainty Quantification using SPDE priors [28.804041716140194]
Recent advances in the deep learning community enables to address the problem through a neural architecture a variational data assimilation framework.
In this work we use the theory of Partial Differential Equations (SPDE) and Gaussian Processes (GP) to estimate both space-and time covariance of the state.
arXiv Detail & Related papers (2024-02-02T19:18:12Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Multi-gauge Hydrological Variational Data Assimilation: Regionalization
Learning with Spatial Gradients using Multilayer Perceptron and
Bayesian-Guided Multivariate Regression [0.3281128493853064]
This contribution presents a novel seamless regionalization technique for learning complex regional transfer functions designed for high-resolution hydrological models.
The approach involves incorporating the inferable regionalization mappings into a differentiable hydrological model and optimizing a cost function computed on multi-gauge data with accurate adjoint-based spatially distributed gradients.
arXiv Detail & Related papers (2023-07-04T08:27:52Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
We introduce lower bounds to the linearized Laplace approximation of the marginal likelihood.
These bounds are amenable togradient-based optimization and allow to trade off estimation accuracy against computational complexity.
arXiv Detail & Related papers (2023-06-06T19:02:57Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
We propose an adaptive FEDerated learning algorithm called FedAgg to alleviate the divergence between the local and average model parameters and obtain a fast model convergence rate.
We show that our framework is superior to existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID datasets.
arXiv Detail & Related papers (2023-03-28T08:07:28Z) - On the Importance of Feature Representation for Flood Mapping using
Classical Machine Learning Approaches [3.555368338253582]
Flood inundation mapping based on earth observation data can help in providing cheap and accurate maps depicting the area affected by a flood event to emergency-relief units in near-real-time.
This paper evaluates the potential of five traditional machine learning approaches such as gradient boosted decision trees, support vector machines or quadratic discriminant analysis.
With total and mean IoU values of 0.8751 and 0.7031 compared to 0.70 and 0.5873 as the previous best-reported results, we show that a simple gradient boosting classifier can significantly improve over deep neural network based approaches.
arXiv Detail & Related papers (2023-03-01T17:39:08Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral
Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction [48.73525876467408]
We propose a novel technique for hyperspectral subspace analysis.
The technique is called joint and progressive subspace analysis (JPSA)
Experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely-used hyperspectral datasets.
arXiv Detail & Related papers (2020-09-21T16:29:59Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.