Knowledge Distillation and Enhanced Subdomain Adaptation Using Graph Convolutional Network for Resource-Constrained Bearing Fault Diagnosis
- URL: http://arxiv.org/abs/2501.07173v1
- Date: Mon, 13 Jan 2025 10:05:47 GMT
- Title: Knowledge Distillation and Enhanced Subdomain Adaptation Using Graph Convolutional Network for Resource-Constrained Bearing Fault Diagnosis
- Authors: Mohammadreza Kavianpour, Parisa Kavianpour, Amin Ramezani, Mohammad TH Beheshti,
- Abstract summary: We propose a progressive knowledge distillation framework that transfers knowledge from a complex teacher model to a compact and efficient student model.
We introduce Enhanced Local Maximum Mean Squared Discrepancy (ELMMSD), which leverages mean and variance statistics in the Reproducing Kernel Hilbert Space (RKHS) and incorporates a priori probability distributions between labels.
- Score: 0.0
- License:
- Abstract: Bearing fault diagnosis under varying working conditions faces challenges, including a lack of labeled data, distribution discrepancies, and resource constraints. To address these issues, we propose a progressive knowledge distillation framework that transfers knowledge from a complex teacher model, utilizing a Graph Convolutional Network (GCN) with Autoregressive moving average (ARMA) filters, to a compact and efficient student model. To mitigate distribution discrepancies and labeling uncertainty, we introduce Enhanced Local Maximum Mean Squared Discrepancy (ELMMSD), which leverages mean and variance statistics in the Reproducing Kernel Hilbert Space (RKHS) and incorporates a priori probability distributions between labels. This approach increases the distance between clustering centers, bridges subdomain gaps, and enhances subdomain alignment reliability. Experimental results on benchmark datasets (CWRU and JNU) demonstrate that the proposed method achieves superior diagnostic accuracy while significantly reducing computational costs. Comprehensive ablation studies validate the effectiveness of each component, highlighting the robustness and adaptability of the approach across diverse working conditions.
Related papers
- Stability and Generalization for Distributed SGDA [70.97400503482353]
We propose the stability-based generalization analytical framework for Distributed-SGDA.
We conduct a comprehensive analysis of stability error, generalization gap, and population risk across different metrics.
Our theoretical results reveal the trade-off between the generalization gap and optimization error.
arXiv Detail & Related papers (2024-11-14T11:16:32Z) - Decentralized Smoothing ADMM for Quantile Regression with Non-Convex Sparse Penalties [3.269165283595478]
In the rapidly evolving internet-of-things (IoT) ecosystem, effective data analysis techniques are crucial for handling distributed data generated by sensors.
Addressing the limitations of existing methods, such as the sub-gradient consensus approach, which fails to distinguish between active and non-active coefficients.
arXiv Detail & Related papers (2024-08-02T15:00:04Z) - Few-shot fault diagnosis based on multi-scale graph convolution filtering for industry [1.673828135656713]
This paper introduces a fault diagnosis approach employing Multi-Scale Graph Convolution filtering (MSGCF)
MSGCF enhances the traditional Graph Neural Network framework by integrating both local and global information fusion modules within the graph convolution filter block.
Experiments on the University of Paderborn bearing dataset (PU) demonstrate that the MSGCF method proposed herein surpasses alternative approaches in accuracy.
arXiv Detail & Related papers (2024-05-30T02:51:29Z) - Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault Diagnosis [6.675805308519987]
Unsupervised domain adaptation (UDA) deals with the scenario where labeled data are available in a source domain, and only unlabeled data are available in a target domain.
We propose a novel UDA method called Calibrated Adaptive Teacher (CAT), where we propose to calibrate the predictions of the teacher network throughout the self-training process.
arXiv Detail & Related papers (2023-12-05T15:19:29Z) - Constructive Incremental Learning for Fault Diagnosis of Rolling
Bearings with Ensemble Domain Adaptation [6.7898797318208075]
rolling bearing fault diagnosis is a practical issue across various working conditions.
The complexity of the external environment and the structure of rolling bearings often manifests faults characterized by randomness and fuzziness.
This paper presents a novel approach termed constructive Incremental learning-based ensemble domain adaptation (CIL-EDA) approach.
arXiv Detail & Related papers (2023-08-29T02:23:58Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
We propose a framework for learning calibrated uncertainties under domain shifts.
In particular, the density ratio estimation reflects the closeness of a target (test) sample to the source (training) distribution.
We show that our proposed method generates calibrated uncertainties that benefit downstream tasks.
arXiv Detail & Related papers (2020-10-08T02:10:54Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.