論文の概要: From Fake to Hyperpartisan News Detection Using Domain Adaptation
- arxiv url: http://arxiv.org/abs/2308.02185v1
- Date: Fri, 4 Aug 2023 07:58:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 13:30:14.464413
- Title: From Fake to Hyperpartisan News Detection Using Domain Adaptation
- Title(参考訳): ドメイン適応を用いた偽ニュースから超党派ニュースへ
- Authors: R\u{a}zvan-Alexandru Sm\u{a}du, Sebastian-Vasile Echim,
Dumitru-Clementin Cercel, Iuliana Marin, Florin Pop
- Abstract要約: Unsupervised Domain Adaptation (UDA)は、2つのデータ分散間のドメインシフトを減らすことを目的とした一般的なテクニックである。
偽ニュース検出と超党派ニュース検出の2つのテキスト分類作業におけるUDAの効果について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unsupervised Domain Adaptation (UDA) is a popular technique that aims to
reduce the domain shift between two data distributions. It was successfully
applied in computer vision and natural language processing. In the current
work, we explore the effects of various unsupervised domain adaptation
techniques between two text classification tasks: fake and hyperpartisan news
detection. We investigate the knowledge transfer from fake to hyperpartisan
news detection without involving target labels during training. Thus, we
evaluate UDA, cluster alignment with a teacher, and cross-domain contrastive
learning. Extensive experiments show that these techniques improve performance,
while including data augmentation further enhances the results. In addition, we
combine clustering and topic modeling algorithms with UDA, resulting in
improved performances compared to the initial UDA setup.
- Abstract(参考訳): Unsupervised Domain Adaptation (UDA)は、2つのデータ分散間のドメインシフトを減らすことを目的とした一般的なテクニックである。
コンピュータビジョンと自然言語処理にうまく応用された。
本研究では,偽ニュース検出と超党派ニュース検出という2つのテキスト分類タスク間における,教師なしドメイン適応手法の効果について検討する。
トレーニング中にターゲットラベルを含まない偽ニュースから超党派ニュース検出への知識伝達について検討した。
そこで我々は,UDA,教師とのクラスタアライメント,ドメイン間のコントラスト学習を評価する。
広範な実験により、これらの技術は性能が向上するが、データ拡張を含むとさらに結果が向上することが示された。
さらに,クラスタリングとトピックモデリングアルゴリズムを UDA と組み合わせることで,最初の UDA セットアップと比較して性能が向上した。
関連論文リスト
- Improving Domain Adaptation Through Class Aware Frequency Transformation [15.70058524548143]
Unsupervised Domain Adaptation (UDA)アルゴリズムのほとんどは、ラベル付きソースと非ラベル付きターゲットドメインの間のグローバルドメインシフトの削減に重点を置いている。
本稿では,従来の画像処理手法であるCAFT(Class Aware Frequency Transformation)に基づく新しい手法を提案する。
CAFTは、既存のUDAアルゴリズムの全体的な性能を改善するために、擬似ラベルに基づく一貫した低周波スワップを使用する。
論文 参考訳(メタデータ) (2024-07-28T18:16:41Z) - CDA: Contrastive-adversarial Domain Adaptation [11.354043674822451]
我々はtextbfContrastive-adversarial textbfDomain textbfAdaptation textbf(CDA) と呼ばれるドメイン適応のための2段階モデルを提案する。
逆成分はドメインレベルのアライメントを促進するが、2段階のコントラスト学習はクラス情報を利用してドメイン間の高いクラス内コンパクト性を実現する。
論文 参考訳(メタデータ) (2023-01-10T07:43:21Z) - LE-UDA: Label-efficient unsupervised domain adaptation for medical image
segmentation [24.655779957716558]
ラベル有効非教師付きドメイン適応(LE-UDA)と呼ばれる新規で汎用的なフレームワークを提案する。
LE-UDAでは、両ドメイン間の知識伝達のための自己認識一貫性と、UDAの機能アライメントを向上するために自己認識学習モジュールを構築している。
実験結果から,提案するLE-UDAは,限られたソースラベルを有効活用し,ドメイン間セグメンテーション性能を向上し,文献における最先端のUDAアプローチより優れていることが示された。
論文 参考訳(メタデータ) (2022-12-05T07:47:35Z) - Exploiting Instance-based Mixed Sampling via Auxiliary Source Domain
Supervision for Domain-adaptive Action Detection [75.38704117155909]
本稿では,新しいドメイン適応型行動検出手法と新しい適応プロトコルを提案する。
クロスドメイン混合サンプリングと組み合わせた自己学習は、UDAコンテキストにおいて顕著なパフォーマンス向上を示した。
我々は提案したフレームワークをドメイン適応アクション・インスタンス・ミックス(DA-AIM)と呼ぶ。
論文 参考訳(メタデータ) (2022-09-28T22:03:25Z) - Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
マルチソースUnsupervised Domain Adaptationはラベル付きデータを持つ複数のソースドメインからラベル付きターゲットドメインに知識を転送する。
異なるドメインとターゲットドメイン内のノイズの多い擬似ラベル間の分散の相違は、どちらもパフォーマンスのボトルネックにつながる。
本稿では,意識駆動型ドメイン融合(ADNT)と雑音耐性学習(ADNT)を統合し,上記の2つの問題に対処するアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-05T01:08:41Z) - Seeking Similarities over Differences: Similarity-based Domain Alignment
for Adaptive Object Detection [86.98573522894961]
本研究では,Unsupervised Domain Adaptation (UDA) アルゴリズムが検出に使用するコンポーネントを一般化するフレームワークを提案する。
具体的には、最適な設計選択を生かした新しいUDAアルゴリズムViSGAを提案し、インスタンスレベルの特徴を集約する単純だが効果的な方法を提案する。
類似性に基づくグループ化と対角トレーニングの両方により、モデルでは、ゆるやかに整列されたドメインにまたがるすべてのインスタンスにマッチせざるを得ず、機能グループを粗い整列することに集中することが可能であることが示されています。
論文 参考訳(メタデータ) (2021-10-04T13:09:56Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDAはラベル付きソースドメインからラベルなしターゲットドメインへの効率的な知識伝達を試みている。
本稿では,領域にまたがるカテゴリ別センタロイドを適応させるコントラスト学習手法を提案する。
提案手法を自己学習で拡張し,メモリ効率の良い時間アンサンブルを用いて一貫性と信頼性の高い擬似ラベルを生成する。
論文 参考訳(メタデータ) (2021-05-05T11:55:53Z) - Effective Label Propagation for Discriminative Semi-Supervised Domain
Adaptation [76.41664929948607]
半教師付き領域適応(SSDA)法は,大規模な画像分類タスクにおいて大きな可能性を示している。
本稿では、ドメイン間およびドメイン内セマンティック情報を効果的に伝達することにより、この問題に対処する新しい効果的な方法を提案する。
ソースコードと事前訓練されたモデルも間もなくリリースされる予定です。
論文 参考訳(メタデータ) (2020-12-04T14:28:19Z) - Knowledge Distillation for BERT Unsupervised Domain Adaptation [2.969705152497174]
トレーニング済みの言語モデルであるBERTは、さまざまな自然言語処理タスクで大幅なパフォーマンス向上を実現している。
蒸留による逆順応法(AAD)を提案する。
ドメイン間感情分類におけるアプローチを30組のドメイン対で評価した。
論文 参考訳(メタデータ) (2020-10-22T06:51:24Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。