Design Space Exploration on Efficient and Accurate Human Pose Estimation
from Sparse IMU-Sensing
- URL: http://arxiv.org/abs/2308.02397v2
- Date: Mon, 12 Feb 2024 16:58:42 GMT
- Title: Design Space Exploration on Efficient and Accurate Human Pose Estimation
from Sparse IMU-Sensing
- Authors: Iris F\"urst-Walter, Antonio Nappi, Tanja Harbaum, J\"urgen Becker
- Abstract summary: Human Pose Estimation (HPE) to assess human motion in sports, rehabilitation or work safety requires accurate sensing without compromising personal data.
Central trade-off between accuracy and efficient use of hardware resources is rarely discussed in research.
We generate IMU-data from a publicly available body model dataset for different sensor configurations and train a deep learning model with this data.
- Score: 0.04594153909580514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human Pose Estimation (HPE) to assess human motion in sports, rehabilitation
or work safety requires accurate sensing without compromising the sensitive
underlying personal data. Therefore, local processing is necessary and the
limited energy budget in such systems can be addressed by Inertial Measurement
Units (IMU) instead of common camera sensing. The central trade-off between
accuracy and efficient use of hardware resources is rarely discussed in
research. We address this trade-off by a simulative Design Space Exploration
(DSE) of a varying quantity and positioning of IMU-sensors. First, we generate
IMU-data from a publicly available body model dataset for different sensor
configurations and train a deep learning model with this data. Additionally, we
propose a combined metric to assess the accuracy-resource trade-off. We used
the DSE as a tool to evaluate sensor configurations and identify beneficial
ones for a specific use case. Exemplary, for a system with equal importance of
accuracy and resources, we identify an optimal sensor configuration of 4
sensors with a mesh error of 6.03 cm, increasing the accuracy by 32.7% and
reducing the hardware effort by two sensors compared to state of the art. Our
work can be used to design health applications with well-suited sensor
positioning and attention to data privacy and resource-awareness.
Related papers
- MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
We introduce a new benchmark, the Multi-Sensor SIDD dataset, which is the first raw-domain dataset designed to evaluate the sensor transferability of denoising models.
We propose a sensor consistency training framework that enables denoising models to learn the sensor-invariant features.
arXiv Detail & Related papers (2024-11-18T13:32:59Z) - Analysis and Optimization of Seismic Monitoring Networks with Bayesian Optimal Experiment Design [0.0]
Bayesian optimal experimental design (OED) seeks to identify data, sensor configurations, or experiments which can optimally reduce uncertainty.
Information theory guides OED by formulating the choice of experiment or sensor placement as an optimization problem.
In this work, we develop the framework necessary to use Bayesian OED to optimize a sensor network's ability to locate seismic events.
arXiv Detail & Related papers (2024-09-27T04:45:27Z) - Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation [5.143097874851516]
We study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI)
We demonstrate that these methods effectively increase the robustness of model predictions to missing sensors.
We observe that ensemble multi-sensor models are the most robust to the lack of sensors.
arXiv Detail & Related papers (2024-07-22T09:58:29Z) - DiffusionPoser: Real-time Human Motion Reconstruction From Arbitrary Sparse Sensors Using Autoregressive Diffusion [10.439802168557513]
Motion capture from a limited number of body-worn sensors has important applications in health, human performance, and entertainment.
Recent work has focused on accurately reconstructing whole-body motion from a specific sensor configuration using six IMUs.
We propose a single diffusion model, DiffusionPoser, which reconstructs human motion in real-time from an arbitrary combination of sensors.
arXiv Detail & Related papers (2023-08-31T12:36:50Z) - Data-Induced Interactions of Sparse Sensors [3.050919759387984]
We take a thermodynamic view to compute the full landscape of sensor interactions induced by the training data.
Mapping out these data-induced sensor interactions allows combining them with external selection criteria and anticipating sensor replacement impacts.
arXiv Detail & Related papers (2023-07-21T18:13:37Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
This paper introduces a novel methodology to resolve the issue of optimal sensor placement for Human Activity Recognition.
The derived skeleton data provides a unique strategy for identifying the optimal sensor location.
Our findings indicate that the vision-based method for sensor placement offers comparable results to the conventional deep learning approach.
arXiv Detail & Related papers (2023-07-06T10:38:14Z) - Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition [3.2319909486685354]
A key problem holding up progress in wearable sensor-based human activity recognition is the unavailability of diverse and labeled training data.
We propose an unsupervised statistical feature-guided diffusion model specifically optimized for wearable sensor-based human activity recognition.
By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data.
arXiv Detail & Related papers (2023-05-30T15:12:59Z) - On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks [61.74608497496841]
Training on inaccurate or corrupt data induces model bias and hampers generalisation capabilities.
This paper investigates the effect of sensor errors for the dense 3D vision tasks of depth estimation and reconstruction.
arXiv Detail & Related papers (2023-03-26T22:32:44Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
We present SensiX, a personal edge platform that stays between sensor data and sensing models.
We demonstrate its efficacy in developing motion and audio-based multi-device sensing systems.
Our evaluation shows that SensiX offers a 7-13% increase in overall accuracy and up to 30% increase across different environment dynamics at the expense of 3mW power overhead.
arXiv Detail & Related papers (2020-12-04T23:06:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.