Analysis and Optimization of Seismic Monitoring Networks with Bayesian Optimal Experiment Design
- URL: http://arxiv.org/abs/2410.07215v2
- Date: Mon, 14 Oct 2024 19:47:12 GMT
- Title: Analysis and Optimization of Seismic Monitoring Networks with Bayesian Optimal Experiment Design
- Authors: Jake Callahan, Kevin Monogue, Ruben Villarreal, Tommie Catanach,
- Abstract summary: Bayesian optimal experimental design (OED) seeks to identify data, sensor configurations, or experiments which can optimally reduce uncertainty.
Information theory guides OED by formulating the choice of experiment or sensor placement as an optimization problem.
In this work, we develop the framework necessary to use Bayesian OED to optimize a sensor network's ability to locate seismic events.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring networks increasingly aim to assimilate data from a large number of diverse sensors covering many sensing modalities. Bayesian optimal experimental design (OED) seeks to identify data, sensor configurations, or experiments which can optimally reduce uncertainty and hence increase the performance of a monitoring network. Information theory guides OED by formulating the choice of experiment or sensor placement as an optimization problem that maximizes the expected information gain (EIG) about quantities of interest given prior knowledge and models of expected observation data. Therefore, within the context of seismo-acoustic monitoring, we can use Bayesian OED to configure sensor networks by choosing sensor locations, types, and fidelity in order to improve our ability to identify and locate seismic sources. In this work, we develop the framework necessary to use Bayesian OED to optimize a sensor network's ability to locate seismic events from arrival time data of detected seismic phases at the regional-scale. Bayesian OED requires four elements: 1) A likelihood function that describes the distribution of detection and travel time data from the sensor network, 2) A Bayesian solver that uses a prior and likelihood to identify the posterior distribution of seismic events given the data, 3) An algorithm to compute EIG about seismic events over a dataset of hypothetical prior events, 4) An optimizer that finds a sensor network which maximizes EIG. Once we have developed this framework, we explore many relevant questions to monitoring such as: how to trade off sensor fidelity and earth model uncertainty; how sensor types, number, and locations influence uncertainty; and how prior models and constraints influence sensor placement.
Related papers
- Learnable WSN Deployment of Evidential Collaborative Sensing Model [11.389924009815795]
In wireless sensor networks (WSNs), coverage and deployment are two most crucial issues when conducting detection tasks.
We develop a collaborative sensing model of sensors to enhance detection capabilities of WSNs.
A learnable sensor deployment network (LSDNet) is proposed for achieving the optimal deployment of WSNs.
arXiv Detail & Related papers (2024-03-23T05:29:09Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
This paper investigates the sensor placement problem for networks.
We first formalize the problem under a flow conservation assumption and show that it is NP-hard to place a fixed set of sensors optimally.
Next, we propose an efficient and adaptive greedy for sensor placement that scales to large networks.
arXiv Detail & Related papers (2023-12-12T01:08:08Z) - A distributed neural network architecture for dynamic sensor selection
with application to bandwidth-constrained body-sensor networks [53.022158485867536]
We propose a dynamic sensor selection approach for deep neural networks (DNNs)
It is able to derive an optimal sensor subset selection for each specific input sample instead of a fixed selection for the entire dataset.
We show how we can use this dynamic selection to increase the lifetime of a wireless sensor network (WSN) by imposing constraints on how often each node is allowed to transmit.
arXiv Detail & Related papers (2023-08-16T14:04:50Z) - Design Space Exploration on Efficient and Accurate Human Pose Estimation
from Sparse IMU-Sensing [0.04594153909580514]
Human Pose Estimation (HPE) to assess human motion in sports, rehabilitation or work safety requires accurate sensing without compromising personal data.
Central trade-off between accuracy and efficient use of hardware resources is rarely discussed in research.
We generate IMU-data from a publicly available body model dataset for different sensor configurations and train a deep learning model with this data.
arXiv Detail & Related papers (2023-07-21T13:36:49Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - GEM: Glare or Gloom, I Can Still See You -- End-to-End Multimodal Object
Detector [11.161639542268015]
We propose sensor-aware multi-modal fusion strategies for 2D object detection in harsh-lighting conditions.
Our network learns to estimate the measurement reliability of each sensor modality in the form of scalar weights and masks.
We show that the proposed strategies out-perform the existing state-of-the-art methods on the FLIR-Thermal dataset.
arXiv Detail & Related papers (2021-02-24T14:56:37Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
We propose a scheduling mechanism capable of taking advantage of correlated information.
The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates.
We show that our solution can significantly extend the sensors' lifetime.
arXiv Detail & Related papers (2020-11-19T09:53:27Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Learning a Probabilistic Strategy for Computational Imaging Sensor
Selection [16.553234762932938]
We propose a physics-constrained, fully differentiable, autoencoder that learns a probabilistic sensor-sampling strategy for optimized sensor design.
The proposed method learns a system's preferred sampling distribution that characterizes the correlations between different sensor selections as a binary, fully-connected Ising model.
arXiv Detail & Related papers (2020-03-23T17:52:17Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
We propose SelectFusion, an end-to-end selective sensor fusion module.
During prediction, the network is able to assess the reliability of the latent features from different sensor modalities.
We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets.
arXiv Detail & Related papers (2019-12-30T20:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.