論文の概要: Differentiable adaptive short-time Fourier transform with respect to the
window length
- arxiv url: http://arxiv.org/abs/2308.02418v1
- Date: Wed, 26 Jul 2023 06:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 01:38:24.728301
- Title: Differentiable adaptive short-time Fourier transform with respect to the
window length
- Title(参考訳): ウィンドウ長に対する可変適応短時間フーリエ変換
- Authors: Maxime Leiber, Yosra Marnissi, Axel Barrau, Mohammed El Badaoui
- Abstract要約: 本稿では,短時間フーリエ変換(STFT)のフレーム単位と周波数単位のウィンドウ長に対する勾配に基づく最適化手法を提案する。
結果として得られる微分可能適応STFTは、過渡成分と定常成分の両方に同じ時間周波数表現で適応できるなど、可換性を持っているが、勾配降下により容易に最適化できる。
- 参考スコア(独自算出の注目度): 4.664495510551647
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a gradient-based method for on-the-fly optimization for
both per-frame and per-frequency window length of the short-time Fourier
transform (STFT), related to previous work in which we developed a
differentiable version of STFT by making the window length a continuous
parameter. The resulting differentiable adaptive STFT possesses commendable
properties, such as the ability to adapt in the same time-frequency
representation to both transient and stationary components, while being easily
optimized by gradient descent. We validate the performance of our method in
vibration analysis.
- Abstract(参考訳): 本稿では,短時間フーリエ変換 (STFT) のフレーム単位と周波数単位のウィンドウ長を段階的に最適化する手法を提案する。
結果として得られる微分可能適応STFTは、過渡成分と定常成分の両方に同じ時間周波数表現で適応できるなど、可換性を持っているが、勾配降下により容易に最適化できる。
本手法の性能を振動解析で検証する。
関連論文リスト
- State-Free Inference of State-Space Models: The Transfer Function Approach [132.83348321603205]
状態のない推論では、状態サイズが大きくなると大きなメモリや計算コストは発生しない。
提案した周波数領域転送関数のパラメトリゼーション特性を用いてこれを実現する。
長い畳み込みハイエナベースライン上での言語モデリングにおける難易度の改善を報告した。
論文 参考訳(メタデータ) (2024-05-10T00:06:02Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
動的チューニング(DyT)は、ViT適応のためのパラメータと推論効率を改善するための新しいアプローチである。
DyTは既存のPEFT法に比べて性能が優れており、VTAB-1KベンチマークではFLOPの71%しか呼び出されていない。
論文 参考訳(メタデータ) (2024-03-18T14:05:52Z) - Differentiable short-time Fourier transform with respect to the hop
length [4.664495510551647]
本稿では,ホップ長やフレーム時間位置の勾配に基づく最適化が可能な,短時間フーリエ変換(STFT)の微分可能バージョンを提案する。
提案手法は、ホップ長の連続的な性質により、より微調整された最適化が可能となるため、フレームの時間的位置決めの制御を改善する。
論文 参考訳(メタデータ) (2023-07-26T07:04:09Z) - Experimental implementation of the optical fractional Fourier transform
in the time-frequency domain [0.0]
原子量子光メモリシステムを用いた時間周波数領域における分数フーリエ変換の実験的実現について述べる。
FrFTは, ショットノイズ制限ホモダイン検出器を用いて測定した時間周期ウィグナー関数の解析により検証した。
論文 参考訳(メタデータ) (2023-03-23T14:39:52Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - Lightweight and High-Fidelity End-to-End Text-to-Speech with Multi-Band
Generation and Inverse Short-Time Fourier Transform [9.606821628015933]
マルチバンド生成と逆ショートタイムフーリエ変換を用いた軽量なエンドツーエンドテキスト音声合成モデルを提案する。
実験結果から,本モデルでは音声を自然に合成し,VITSで合成した。
より小型のモデルでは、自然性と推論速度の両方に関して軽量のベースラインモデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-10-28T08:15:05Z) - A differentiable short-time Fourier transform with respect to the window
length [4.0527583944137255]
ニューラルネットワークにおけるスペクトログラムの使用について,ウィンドウ長を降下勾配によって最適化可能な連続パラメータにすることで再検討する。
この貢献は主に理論的に理論的だが、修正されたSTFTを既存のニューラルネットワークに接続するのは簡単である。
論文 参考訳(メタデータ) (2022-08-23T11:38:33Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - Stable, Fast and Accurate: Kernelized Attention with Relative Positional
Encoding [63.539333383965726]
相対的位置符号化(RPE)を用いた変換器の注意計算を高速化する新しい手法を提案する。
相対的な位置符号化がToeplitz行列を形成するという観測に基づいて、Fast Fourier Transform (FFT) を用いて、RPEによるカーネル化された注意を効率的に計算できることを数学的に示す。
論文 参考訳(メタデータ) (2021-06-23T17:51:26Z) - Optimizing Short-Time Fourier Transform Parameters via Gradient Descent [24.80575785857326]
任意のコスト関数に対してSTFTパラメータの勾配を求める方法を示す。
我々は、入力全体を通して一定であるパラメータ値に対して、また、これらのパラメータが様々な信号特性に対応するために、時間とともに動的に変化しなければならない場合にも、そうする。
論文 参考訳(メタデータ) (2020-10-28T15:49:56Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。