論文の概要: Multimodal Indoor Localisation in Parkinson's Disease for Detecting
Medication Use: Observational Pilot Study in a Free-Living Setting
- arxiv url: http://arxiv.org/abs/2308.02419v1
- Date: Thu, 3 Aug 2023 08:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 12:11:26.168833
- Title: Multimodal Indoor Localisation in Parkinson's Disease for Detecting
Medication Use: Observational Pilot Study in a Free-Living Setting
- Title(参考訳): 薬物使用検出のためのパーキンソン病におけるマルチモーダル室内局在 : 自由生活環境における観察実験
- Authors: Ferdian Jovan, Catherine Morgan, Ryan McConville, Emma L. Tonkin, Ian
Craddock, Alan Whone
- Abstract要約: パーキンソン病(英: Parkinson's disease、PD)は、歩行障害を含む運動障害を引き起こす徐々に進行する神経変性疾患である。
運動ゆらぎ(英: motor fluctuations)とは、レボドーパ療法(オン)に陽性反応を示す期間と、薬効が低下するにつれてPD症状(オフ)が再発する期間の間の変化である。
これらの変動はしばしば歩行速度に影響し、PDが進行するにつれてその不安定な影響が増大する。
室内歩行速度の特徴を含む屋内局地化が、PD患者がレボドーパ薬を服用しているか、あるいは保留しているかを検知することにより、運動変動の評価に有効であるかどうかを評価することを目的とする。
- 参考スコア(独自算出の注目度): 2.1726452647707792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parkinson's disease (PD) is a slowly progressive, debilitating
neurodegenerative disease which causes motor symptoms including gait
dysfunction. Motor fluctuations are alterations between periods with a positive
response to levodopa therapy ("on") and periods marked by re-emergency of PD
symptoms ("off") as the response to medication wears off. These fluctuations
often affect gait speed and they increase in their disabling impact as PD
progresses. To improve the effectiveness of current indoor localisation
methods, a transformer-based approach utilising dual modalities which provide
complementary views of movement, Received Signal Strength Indicator (RSSI) and
accelerometer data from wearable devices, is proposed. A sub-objective aims to
evaluate whether indoor localisation, including its in-home gait speed features
(i.e. the time taken to walk between rooms), could be used to evaluate motor
fluctuations by detecting whether the person with PD is taking levodopa
medications or withholding them. To properly evaluate our proposed method, we
use a free-living dataset where the movements and mobility are greatly varied
and unstructured as expected in real-world conditions. 24 participants lived in
pairs (consisting of one person with PD, one control) for five days in a smart
home with various sensors. Our evaluation on the resulting dataset demonstrates
that our proposed network outperforms other methods for indoor localisation.
The sub-objective evaluation shows that precise room-level localisation
predictions, transformed into in-home gait speed features, produce accurate
predictions on whether the PD participant is taking or withholding their
medications.
- Abstract(参考訳): パーキンソン病(英: Parkinson's disease、PD)は、歩行障害を含む運動障害を引き起こす神経変性疾患である。
運動ゆらぎ(英: motor fluctuations)とは、レボドーパ療法(オン)に陽性反応を示す期間と、薬効が低下するにつれてPD症状(オフ)が再発する期間の間の変化である。
これらの変動はしばしば歩行速度に影響し、PDが進行するにつれてその不安定な影響が増大する。
現在の屋内ローカライズ手法の有効性を向上させるために,移動の相補的視点,受信信号強度指標(rssi),加速度計データを提供する2つのモダリティを利用した変圧器方式を提案する。
室内歩行速度の特徴(つまり、部屋の間を歩いた時間)を含む屋内でのローカライゼーションを、PD患者がレボドーパ薬を服用しているか、あるいは保留しているかを検知することにより、運動変動を評価することを目的としている。
提案手法を適切に評価するために,実環境において移動と移動が期待通りに大きく変化し,非構造化された自由生活データセットを用いた。
24人の被験者が5日間、さまざまなセンサーを備えたスマートホームでペア(PD1人、コントロール1人)に住んだ。
その結果,提案手法は他の屋内ローカライズ手法よりも優れていることが示された。
サブ目的評価の結果, 室内歩行速度特性に変換された部屋レベルの正確な局所化予測は, pd参加者が服用中か服用中かを正確に予測できることがわかった。
関連論文リスト
- PULSAR: Graph based Positive Unlabeled Learning with Multi Stream
Adaptive Convolutions for Parkinson's Disease Recognition [1.9482539692051932]
パーキンソン病(英: Parkinsons disease、PD)は、運動、発話、協調に影響を及ぼす神経変性疾患である。
本稿では,ウェブカメラで記録した指タップのビデオからPDをスクリーニングする新しい手法PULSARを提案する。
適応型グラフ畳み込みニューラルネットワークを用いて,指触りタスクに特有の時間グラフを動的に学習した。
論文 参考訳(メタデータ) (2023-12-10T05:56:20Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
本稿では,パーキンソン病患者のmPowerデータセットを用いて薬剤状態を予測する方法を提案する。
提案手法は,3つの薬物状態を客観的に予測する上で有望な結果を示す。
論文 参考訳(メタデータ) (2022-07-26T02:08:08Z) - Multimodal Indoor Localisation for Measuring Mobility in Parkinson's
Disease using Transformers [2.683727984711853]
パーキンソン病の10人から収集したデータと、さまざまなセンサーを備えたスマートホームで5日間生活した10人のコントロールを使っています。
屋内でより効果的にローカライズするために、2つのデータモダリティを利用したトランスフォーマーベースのアプローチを提案する。
提案手法は,a) 時間的相関を異なる尺度とレベルで学習し,b) 様々なゲーティング機構を用いて,モダリティ内で関連する特徴を選定し,不必要なモダリティを抑制する。
論文 参考訳(メタデータ) (2022-05-12T15:05:57Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
われわれはスマートウォッチとスマートフォンを使って、PD患者、DD、HCを含む504人の参加者のマルチモーダルデータを収集した。
様々なモダリティを組み合わせることで,分類精度が向上し,さらにPDクラスタが発見された。
論文 参考訳(メタデータ) (2022-05-12T08:59:57Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
鎮静は認知症において高い有病率を有する神経精神医学症状の1つである。
扇動エピソードの検出は、認知症に生きる人々(PLWD)に早期かつタイムリーな介入を提供するのに役立つ。
本研究は,家庭内モニタリングデータを用いてPLWDの動揺リスクを分析するための教師付き学習モデルを提案する。
論文 参考訳(メタデータ) (2021-10-19T11:45:01Z) - An Activity Recognition Framework for Continuous Monitoring of
Non-Steady-State Locomotion of Individuals with Parkinson's Disease [0.9137554315375922]
ユーザに依存しない, ユーザに依存しないトレーニングパラダイムを用いて, 様々な下/上/上/下/上からの加速度情報およびジャイロスコープ情報の性能を検証した。
LSTMを用いて、主観非依存トレーニングにおける情報のサブセット(例えば足のデータ)でさえ、F1スコア > 0.8 を提供するように見えた。
論文 参考訳(メタデータ) (2021-10-08T20:35:45Z) - Exploring Motion Boundaries in an End-to-End Network for Vision-based
Parkinson's Severity Assessment [2.359557447960552]
パーキンソン病の重症度を2つの重要な構成要素である手の動きと歩行で測定するためのエンドツーエンドのディープラーニングフレームワークを提示する。
本手法は,テンポラルセグメンテーションフレームワークで訓練された膨らんだ3次元cnnを用いて,映像データの時間構造と時間構造を学習する。
本研究では,25名のPD患者を対象に,手作業および歩行作業における72.3%,77.1%の上位1位精度のデータセットを用いて,提案手法を評価した。
論文 参考訳(メタデータ) (2020-12-17T19:20:17Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - Vision-based Estimation of MDS-UPDRS Gait Scores for Assessing
Parkinson's Disease Motor Severity [39.51722822896373]
パーキンソン病(英: Parkinson's disease、PD)は、運動機能に影響を及ぼす進行性神経疾患である。
PD障害の身体的重症度は、運動障害学会統一パーキンソン病評価尺度によって定量化することができる。
MDS-UPDRSの歩行スコアに基づいて、個人が撮影する非侵襲的な映像を観察し、3次元の身体骨格を抽出し、時間を通して追跡し、運動を分類するコンピュータビジョンベースモデルを提案する。
論文 参考訳(メタデータ) (2020-07-17T11:49:30Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。