AI Literature Review Suite
- URL: http://arxiv.org/abs/2308.02443v1
- Date: Thu, 27 Jul 2023 17:30:31 GMT
- Title: AI Literature Review Suite
- Authors: David A. Tovar
- Abstract summary: I present an AI Literature Review Suite that integrates several functionalities to provide a comprehensive literature review.
This tool leverages the power of open access science, large language models (LLMs) and natural language processing to enable the searching, downloading, and organizing of PDF files.
The suite also features integrated programs for organization, interaction and query, and literature review summaries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The process of conducting literature reviews is often time-consuming and
labor-intensive. To streamline this process, I present an AI Literature Review
Suite that integrates several functionalities to provide a comprehensive
literature review. This tool leverages the power of open access science, large
language models (LLMs) and natural language processing to enable the searching,
downloading, and organizing of PDF files, as well as extracting content from
articles. Semantic search queries are used for data retrieval, while text
embeddings and summarization using LLMs present succinct literature reviews.
Interaction with PDFs is enhanced through a user-friendly graphical user
interface (GUI). The suite also features integrated programs for bibliographic
organization, interaction and query, and literature review summaries. This tool
presents a robust solution to automate and optimize the process of literature
review in academic and industrial research.
Related papers
- From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
This paper focuses on bridging the comprehension gap between Large Language Models and external tools.
We propose a novel framework, DRAFT, aimed at Dynamically refining tool documentation.
Extensive experiments on multiple datasets demonstrate that DRAFT's iterative, feedback-based refinement significantly ameliorates documentation quality.
arXiv Detail & Related papers (2024-10-10T17:58:44Z) - LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssist is an open-source tool designed to streamline literature reviews in academic research.
It uses Large Language Models (LLMs) and Natural Language Processing (NLP) techniques to automate key aspects of the review process.
arXiv Detail & Related papers (2024-07-19T02:48:54Z) - Bridging Research and Readers: A Multi-Modal Automated Academic Papers
Interpretation System [47.13932723910289]
We introduce an open-source multi-modal automated academic paper interpretation system (MMAPIS) with three-step process stages.
It employs the hybrid modality preprocessing and alignment module to extract plain text, and tables or figures from documents separately.
It then aligns this information based on the section names they belong to, ensuring that data with identical section names are categorized under the same section.
It utilizes the extracted section names to divide the article into shorter text segments, facilitating specific summarizations both within and between sections via LLMs.
arXiv Detail & Related papers (2024-01-17T11:50:53Z) - CRUISE-Screening: Living Literature Reviews Toolbox [8.292338880619061]
CRUISE-Screening is a web-based application for conducting living literature reviews.
It is connected to several search engines via an API, which allows for updating the search results periodically.
arXiv Detail & Related papers (2023-09-04T15:58:43Z) - QuOTeS: Query-Oriented Technical Summarization [0.2936007114555107]
We propose QuOTeS, an interactive system designed to retrieve sentences related to a summary of the research from a collection of potential references.
QuOTeS integrates techniques from Query-Focused Extractive Summarization and High-Recall Information Retrieval to provide Interactive Query-Focused Summarization of scientific documents.
The results show that QuOTeS provides a positive user experience and consistently provides query-focused summaries that are relevant, concise, and complete.
arXiv Detail & Related papers (2023-06-20T18:43:24Z) - SciLit: A Platform for Joint Scientific Literature Discovery,
Summarization and Citation Generation [11.186252009101077]
We propose SciLit, a pipeline that automatically recommends relevant papers, extracts highlights, and suggests a reference sentence as a citation of a paper.
SciLit efficiently recommends papers from large databases of hundreds of millions of papers using a two-stage pre-fetching and re-ranking literature search system.
arXiv Detail & Related papers (2023-06-06T09:34:45Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
We describe the Semantic Reader Project, a effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers.
Ten prototype interfaces have been developed and more than 300 participants and real-world users have shown improved reading experiences.
We structure this paper around challenges scholars and the public face when reading research papers.
arXiv Detail & Related papers (2023-03-25T02:47:09Z) - iFacetSum: Coreference-based Interactive Faceted Summarization for
Multi-Document Exploration [63.272359227081836]
iFacetSum integrates interactive summarization together with faceted search.
Fine-grained facets are automatically produced based on cross-document coreference pipelines.
arXiv Detail & Related papers (2021-09-23T20:01:11Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
We introduce LAPS (Language for Abstraction and Program Search), a technique for using natural language annotations to guide joint learning of libraries and neurally-guided search models for synthesis.
When integrated into a state-of-the-art library learning system (DreamCoder), LAPS produces higher-quality libraries and improves search efficiency and generalization.
arXiv Detail & Related papers (2021-06-18T15:08:47Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.