論文の概要: A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and
Prospects
- arxiv url: http://arxiv.org/abs/2308.02457v1
- Date: Fri, 4 Aug 2023 16:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 12:14:06.966512
- Title: A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and
Prospects
- Title(参考訳): 時間知識グラフの完成に関する調査 : 分類学,進歩,展望
- Authors: Jiapu Wang, Boyue Wang, Meikang Qiu, Shirui Pan, Bo Xiong, Heng Liu,
Linhao Luo, Tengfei Liu, Yongli Hu, Baocai Yin, Wen Gao
- Abstract要約: 時間的特性は、かなりの量の知識で顕著に明らかである。
新たな知識の継続的な出現、構造化されていないデータから構造化された情報を抽出するアルゴリズムの弱点、ソースデータセットにおける情報の欠如を引用する。
TKGC(Temporal Knowledge Graph Completion)のタスクは、利用可能な情報に基づいて行方不明アイテムを予測することを目的として、注目を集めている。
- 参考スコア(独自算出の注目度): 73.44022660932087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal characteristics are prominently evident in a substantial volume of
knowledge, which underscores the pivotal role of Temporal Knowledge Graphs
(TKGs) in both academia and industry. However, TKGs often suffer from
incompleteness for three main reasons: the continuous emergence of new
knowledge, the weakness of the algorithm for extracting structured information
from unstructured data, and the lack of information in the source dataset.
Thus, the task of Temporal Knowledge Graph Completion (TKGC) has attracted
increasing attention, aiming to predict missing items based on the available
information. In this paper, we provide a comprehensive review of TKGC methods
and their details. Specifically, this paper mainly consists of three
components, namely, 1)Background, which covers the preliminaries of TKGC
methods, loss functions required for training, as well as the dataset and
evaluation protocol; 2)Interpolation, that estimates and predicts the missing
elements or set of elements through the relevant available information. It
further categorizes related TKGC methods based on how to process temporal
information; 3)Extrapolation, which typically focuses on continuous TKGs and
predicts future events, and then classifies all extrapolation methods based on
the algorithms they utilize. We further pinpoint the challenges and discuss
future research directions of TKGC.
- Abstract(参考訳): 時間的特徴は、学術と産業の両方において、時間的知識グラフ(TKG)が重要な役割を担っている、かなりの量の知識において明らかである。
しかしながら、tkgは、新しい知識の継続的な出現、非構造化データから構造化情報を抽出するアルゴリズムの弱点、ソースデータセットにおける情報の欠如という3つの主な理由から、不完全さに苦しむことが多い。
このように、TKGC(Temporal Knowledge Graph Completion)タスクは、利用可能な情報に基づいて行方不明アイテムを予測することを目的として、注目を集めている。
本稿では,TKGC法とその詳細について概説する。
具体的には,1)tkgc法の予備機能,トレーニングに必要な損失関数,およびデータセットと評価プロトコルの3つの構成要素から構成する。
さらに、時間的情報を処理する方法に基づいて、関連するTKGCメソッドを分類する。 3) Extrapolationは、通常、連続的なTKGに焦点を当て、将来の事象を予測し、その後、使用するアルゴリズムに基づいて、すべての外挿メソッドを分類する。
さらに課題を指摘し,今後のTKGC研究の方向性について論じる。
関連論文リスト
- Exploiting Large Language Models Capabilities for Question Answer-Driven Knowledge Graph Completion Across Static and Temporal Domains [8.472388165833292]
本稿では,GS-KGC(Generative Subgraph-based KGC)と呼ばれる新しい生成完了フレームワークを提案する。
GS-KGCは、ターゲットエンティティを直接生成するために質問応答形式を採用し、複数の可能な答えを持つ質問の課題に対処する。
本手法は,新たな情報発見を容易にするために,既知の事実を用いて負のサンプルを生成する。
論文 参考訳(メタデータ) (2024-08-20T13:13:41Z) - Multi-level Shared Knowledge Guided Learning for Knowledge Graph Completion [26.40236457109129]
データセットとタスクレベルの両方で動作する多レベル共有知識ガイド学習法(SKG)を提案する。
データセットレベルでは、SKG-KGCは、テキスト要約を通じてエンティティセット内の共有機能を特定することによって、元のデータセットを広げる。
タスクレベルでは、ヘッドエンティティ予測、関係予測、テールエンティティ予測という3つの典型的なKGCサブタスクに対して、動的に調整された損失重みを持つ革新的なマルチタスク学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-08T03:27:46Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Towards Data-centric Graph Machine Learning: Review and Outlook [120.64417630324378]
データ中心グラフ機械学習(DC-GML)という,グラフデータライフサイクルのすべての段階を包含する体系的なフレームワークを導入する。
各段階の完全な分類法が示され、3つの重要なグラフ中心の質問に答える。
我々は、DC-GMLドメインの将来展望を指摘し、その進歩と応用をナビゲートするための洞察を提供する。
論文 参考訳(メタデータ) (2023-09-20T00:40:13Z) - Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph [4.103806361930888]
時間的KG(TKG)は、静的トリプルとタイムスタンプを関連付けることで従来の知識グラフを拡張する。
本稿では,メタラーニングに基づく時間知識グラフ外挿法(MTKGE)モデルを提案する。
MTKGEは知識グラフ外挿法において既存の最先端モデルよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T09:52:26Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
知識グラフ推論(KGR)は、知識グラフに基づくマイニング論理則に基づいて、既存の事実から新しい事実を推論することを目的としている。
質問応答やレコメンデーションシステムなど、多くのAIアプリケーションでKGを使うことに大きなメリットがあることが証明されている。
論文 参考訳(メタデータ) (2022-12-12T08:40:04Z) - Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Concept-Aware Information [31.10140298420744]
時間的知識グラフ(TKG)のための数発のアウト・オブ・グラフ(OOG)リンク予測タスクを提案する。
メタラーニングフレームワークを用いて、未知のエンティティに関するリンクから、欠落したエンティティを予測する。
我々のモデルは3つのデータセットすべてにおいて優れた性能を達成する。
論文 参考訳(メタデータ) (2022-11-15T14:23:07Z) - Temporal Knowledge Graph Completion: A Survey [24.35073672695095]
知識グラフ補完(KGC)は、欠落したリンクを予測でき、現実世界の知識グラフにとって不可欠である。
最近の手法では、事実のタイムスタンプをさらに取り入れることで予測結果が改善されている。
論文 参考訳(メタデータ) (2022-01-16T05:43:49Z) - Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated
Recurrent Memory Network [54.735400754548635]
アスペクトレベルの感情分類(ASC)は、レビューで言及された特定の側面に対する微粒な感情極性を予測することを目的としている。
最近のASCの進歩にもかかわらず、マシンが重要な側面の感情を推測できるようにすることは依然として困難である。
本稿では,(1)アスペクト知識の欠如によるアスペクト表現がアスペクトの正確な意味と特性情報を表現するのに不十分であること,(2)先行研究は局所的な構文情報とグローバルな関係情報のみを捉えること,という2つの課題に対処する。
論文 参考訳(メタデータ) (2021-08-05T03:39:30Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。