論文の概要: A comprehensive review of deep learning in lung cancer
- arxiv url: http://arxiv.org/abs/2308.02528v1
- Date: Mon, 31 Jul 2023 16:28:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 01:08:30.615412
- Title: A comprehensive review of deep learning in lung cancer
- Title(参考訳): 肺癌における深層学習の総合的考察
- Authors: Farzane Tajidini
- Abstract要約: 本稿では,がん診断のプロセスや臨床医が採用する標準分類法など,がん診断領域の基礎について論じる。
がん診断の現在の方法は、新しいよりインテリジェントなアプローチを要求され、効果がないとみなされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To provide the reader with a historical perspective on cancer classification
approaches, we first discuss the fundamentals of the area of cancer diagnosis
in this article, including the processes of cancer diagnosis and the standard
classification methods employed by clinicians. Current methods for cancer
diagnosis are deemed ineffective, calling for new and more intelligent
approaches.
- Abstract(参考訳): がん分類アプローチに関する歴史的展望を読者に提供するために,まず,がん診断のプロセスや臨床医が採用する標準分類法など,がん診断領域の基礎について論じる。
現在のがん診断の方法は、新しくよりインテリジェントなアプローチを求めるため、効果がないと考えられている。
関連論文リスト
- Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Application analysis of ai technology combined with spiral CT scanning
in early lung cancer screening [15.6839495538166]
肺癌患者の5年間の生存率は、まだ20%以下であり、進行している。
近年、人工知能技術が腫瘍学に徐々に応用され始めている。
本研究は, 早期肺癌検診において, 安全かつ効率的な検診方法を見いだす目的で, 組み合わせた方法を適用した。
論文 参考訳(メタデータ) (2024-01-26T07:58:09Z) - Deep Learning Techniques for Cervical Cancer Diagnosis based on
Pathology and Colposcopy Images [0.0]
頸部がんは毎年何百万人もの女性に感染する病気である。
コンピュータビジョンにおける有望な技術であるディープラーニングは、頸部がん検診の精度と効率を改善するための潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-10-25T14:23:40Z) - Robust Tumor Detection from Coarse Annotations via Multi-Magnification
Ensembles [11.070094685209598]
乳癌患者のセンチネルリンパ節のオープンなCAMELYON16データセットにおいて,転移の検出精度を大幅に向上する新しいアンサンブル法を提案する。
臨床的に癌診断に有用であることを示すため,本法により良好な結果が得られた。
論文 参考訳(メタデータ) (2023-03-29T08:41:22Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - Machine Learning Applications in Diagnosis, Treatment and Prognosis of
Lung Cancer [22.84388553607303]
本稿では, 肺癌の診断と治療のさまざまな側面を強化する機械学習によるアプローチの概要について述べる。
肺癌における機械学習の今後の応用に向けた課題と機会を強調した。
論文 参考訳(メタデータ) (2022-03-05T17:43:57Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Early Diagnosis of Lung Cancer Using Computer Aided Detection via Lung
Segmentation Approach [0.1749935196721634]
アメリカがん協会は、がんによる死亡件数の約27%を推定している。
その進化の初期段階では、肺がんは通常は症状を起こさない。
多くの患者は、症状がより顕著になり、治療が不十分で死亡率の高い進行期に診断されている。
論文 参考訳(メタデータ) (2021-07-23T05:46:06Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z) - CancerNet-SCa: Tailored Deep Neural Network Designs for Detection of
Skin Cancer from Dermoscopy Images [71.68436132514542]
皮膚がんはアメリカ合衆国で最も頻繁に診断されるがんである。
本研究では,皮膚内視鏡画像から皮膚がんを検出するための深層神経回路の設計手法である CancerNet-SCa について紹介する。
論文 参考訳(メタデータ) (2020-11-21T02:17:59Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。