qgym: A Gym for Training and Benchmarking RL-Based Quantum Compilation
- URL: http://arxiv.org/abs/2308.02536v1
- Date: Tue, 1 Aug 2023 10:07:20 GMT
- Title: qgym: A Gym for Training and Benchmarking RL-Based Quantum Compilation
- Authors: Stan van der Linde, Willem de Kok, Tariq Bontekoe, Sebastian Feld
- Abstract summary: qgym is a framework for training and benchmarking RL agents and algorithms.
RL is a technique in which an agent interacts with an environment to learn complex policies to attain a specific goal.
Qgym can be used to train and benchmark RL agents and algorithms in highly customizable environments.
- Score: 1.3496450124792878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compiling a quantum circuit for specific quantum hardware is a challenging
task. Moreover, current quantum computers have severe hardware limitations. To
make the most use of the limited resources, the compilation process should be
optimized. To improve currents methods, Reinforcement Learning (RL), a
technique in which an agent interacts with an environment to learn complex
policies to attain a specific goal, can be used. In this work, we present qgym,
a software framework derived from the OpenAI gym, together with environments
that are specifically tailored towards quantum compilation. The goal of qgym is
to connect the research fields of Artificial Intelligence (AI) with quantum
compilation by abstracting parts of the process that are irrelevant to either
domain. It can be used to train and benchmark RL agents and algorithms in
highly customizable environments.
Related papers
- From Easy to Hard: Tackling Quantum Problems with Learned Gadgets For Real Hardware [0.0]
Reinforcement learning has proven to be a powerful approach, but many limitations remain due to the exponential scaling of the space of possible operations on qubits.
We develop an algorithm that automatically learns composite gates ("$gadgets$") and adds them as additional actions to the reinforcement learning agent to facilitate the search.
We show that with GRL we can find very compact PQCs that improve the error in estimating the ground state of TFIM by up to $107$ fold.
arXiv Detail & Related papers (2024-10-31T22:02:32Z) - Ecosystem-Agnostic Standardization of Quantum Runtime Architecture: Accelerating Utility in Quantum Computing [0.0]
This research covers all layers of Quantum Computing Optimization Middleware (QCOM)
It requires execution on real quantum hardware (QH)
There is a need for a widely adopted runtime platform (RP) driven by the open-source community.
arXiv Detail & Related papers (2024-09-26T16:43:07Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum simulation with just-in-time compilation [0.0]
We present a first attempt to perform circuit-based quantum simulation using the just-in-time (JIT) compilation technique.
Qibojit is a new module for the Qibo quantum computing framework, which uses a just-in-time compilation approach through Python.
arXiv Detail & Related papers (2022-03-16T18:00:00Z) - Quantum Architecture Search via Continual Reinforcement Learning [0.0]
This paper proposes a machine learning-based method to construct quantum circuit architectures.
We present the Probabilistic Policy Reuse with deep Q-learning (PPR-DQL) framework to tackle this circuit design challenge.
arXiv Detail & Related papers (2021-12-10T19:07:56Z) - Quantum Architecture Search via Deep Reinforcement Learning [0.0]
It is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible.
We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge.
We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent.
arXiv Detail & Related papers (2021-04-15T18:53:26Z) - Extending C++ for Heterogeneous Quantum-Classical Computing [56.782064931823015]
qcor is a language extension to C++ and compiler implementation that enables heterogeneous quantum-classical programming, compilation, and execution in a single-source context.
Our work provides a first-of-its-kind C++ compiler enabling high-level quantum kernel (function) expression in a quantum-language manner.
arXiv Detail & Related papers (2020-10-08T12:49:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.