$d$-mon: transmon with strong anharmonicity
- URL: http://arxiv.org/abs/2308.02547v2
- Date: Wed, 9 Aug 2023 20:33:41 GMT
- Title: $d$-mon: transmon with strong anharmonicity
- Authors: Hrishikesh Patel, Vedangi Pathak, Oguzhan Can, Andrew C. Potter,
Marcel Franz
- Abstract summary: We propose a novel qubit architecture based on a planar $c$-axis Josephson junction between a thin flake $d$-wave superconductor.
The proposed device operates in a regime where quasiparticles are fully gapped and can be expected to achieve long coherence times.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel qubit architecture based on a planar $c$-axis Josephson
junction between a thin flake $d$-wave superconductor ($d$SC), such as a
high-$T_c$ cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$, and a conventional $s$-wave
superconductor. When operated in the transmon regime the device -- that we call
"$d$-mon" -- becomes insensitive to offset charge fluctuations and,
importantly, exhibits at the same time energy level spectrum with strong
anharmonicity that is widely tunable through the device geometry and applied
magnetic flux. Crucially, unlike previous qubit designs based on $d$-wave
superconductors the proposed device operates in a regime where quasiparticles
are fully gapped and can be therefore expected to achieve long coherence times.
Related papers
- High quality superconducting tantalum resonators with beta phase defects [29.026630952383844]
Coherence of superconducting transmon qubits has been shown to improve by forming qubit capacitor pads from $alpha$-tantalum.
We show resonators containing $beta$-phase tantalum in the form of inclusions near the metal-substrate interface with internal quality factors up to $(5.0 pm 2.5) times 106$ in the single photon regime.
Our results indicate that small concentrations of $beta$-phase can be beneficial, enhancing critical magnetic fields and potentially, for improving coherence in tantalum based superconducting circuits.
arXiv Detail & Related papers (2025-02-24T15:25:23Z) - Identification of soft modes in amorphous Al$_{2}$O$_{3}$ via first-principles [69.65384453064829]
Amorphous Al$_2$O$_3$ is a fundamental component of modern superconducting qubits.
We perform a first-principles study of amorphous Al$_2$O$_3$ and identify low-energy modes in the electronic and phonon spectra as a possible origin for TLSs.
arXiv Detail & Related papers (2025-02-20T18:43:24Z) - Evidence of P-wave Pairing in K$_2$Cr$_3$As$_3$ Superconductors from Phase-sensitive Measurement [26.69408771617283]
We study a recently discovered family of superconductors, A$$Cr$_3$As$_3$ (A = K, Rb, Cs)
We fabricate superconducting quantum interference devices (SQUIDs) on exfoliated K$$Cr$_3$As$_3$, and perform the phase-sensitive measurement.
We observe that such SQUIDs exhibit a pronounced second-order harmonic component sin (2$pi$) in the current-phase relation, suggesting the admixture of 0- and $pi$-phase.
arXiv Detail & Related papers (2024-08-14T07:34:45Z) - Magnon-mediated quantum gates for superconducting qubits [0.0]
We propose a hybrid quantum system consisting of a magnetic particle inductively coupled to two superconducting transmon qubits.
We show that the system can be tuned into three different regimes of effective qubit-qubit interactions.
arXiv Detail & Related papers (2024-06-21T08:23:13Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Numerical analysis of a three-wave-mixing Josephson traveling-wave
parametric amplifier with engineered dispersion loadings [62.997667081978825]
Recently proposed Josephson traveling-wave parametric amplifier has great potential in achieving a gain of 20 dB and a flat bandwidth of at least 4 GHz.
We model the advanced JTWPA circuit with periodic modulation of the circuit parameters.
engineered dispersion loadings allow achieving sufficiently wide $3$ dB-bandwidth from $3$ GHz to $9$ GHz combined with a reasonably small ripple.
arXiv Detail & Related papers (2022-09-22T14:46:04Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Ultrafast renormalization of the onsite Coulomb repulsion in a cuprate
superconductor [8.775772298435337]
We use time-resolved x-ray absorption spectroscopy to demonstrate the light-induced renormalization of the Hubbard $U$ in a cuprate superconductor.
We show that intense femtosecond laser pulses induce a substantial redshift of the upper Hubbard band, while leaving the Zhang-Rice singlet energy unaffected.
Our demonstration of a dynamical Hubbard $U$ renormalization in a copper oxide paves the way to a novel strategy for the manipulation of superconductivity, magnetism, as well as to the realization of other long-range-ordered phases in light-driven quantum materials.
arXiv Detail & Related papers (2021-09-27T17:59:42Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Topological superconductor from superconducting topological surface
states and fault-tolerant quantum computing [6.394072140094434]
A widely believed chiral $p$-wave superfluid is the Moore-Read state in the $nu=frac52$ fractional quantum Hall effect.
Here we report a new mechanism for realizing 2D chiral $p$-wave superconductors on the surface of 3D $s$-wave superconductors.
arXiv Detail & Related papers (2020-03-26T06:07:06Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z) - Implementation of a transmon qubit using superconducting granular
aluminum [0.0]
grAl may provide a robust source of non-linearity for strongly driven quantum circuits.
In intrinsic qubit linewidth $gamma = 2 pi times 10,mathrmkHz$, corresponding to a lifetime of $16,mathrmmu s$.
This linewidth remains below $2 pi times 150,mathrmkHz$ for in-plane magnetic fields up to $sim70,mathrmmT$.
arXiv Detail & Related papers (2019-11-06T12:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.