論文の概要: Industrial Memories: Exploring the Findings of Government Inquiries with
Neural Word Embedding and Machine Learning
- arxiv url: http://arxiv.org/abs/2308.02556v1
- Date: Wed, 2 Aug 2023 10:39:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 01:01:06.352069
- Title: Industrial Memories: Exploring the Findings of Government Inquiries with
Neural Word Embedding and Machine Learning
- Title(参考訳): 産業記憶:ニューラルワード埋め込みと機械学習による政府調査の発見を探る
- Authors: Susan Leavy, Emilie Pine and Mark T Keane
- Abstract要約: 本稿では,政府調査の結果を詳述した大量のテキストの探索を支援するためのテキストマイニングシステムを提案する。
我々は,アイルランド政府の産業学校への探究の成果を,単語の埋め込み,テキストの分類,可視化によって変えた。
- 参考スコア(独自算出の注目度): 9.281671380673304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a text mining system to support the exploration of large volumes
of text detailing the findings of government inquiries. Despite their
historical significance and potential societal impact, key findings of
inquiries are often hidden within lengthy documents and remain inaccessible to
the general public. We transform the findings of the Irish government's inquiry
into industrial schools and through the use of word embedding, text
classification and visualisation, present an interactive web-based platform
that enables the exploration of the text to uncover new historical insights.
- Abstract(参考訳): 本稿では,政府調査の結果を詳述した大量のテキストの探索を支援するテキストマイニングシステムを提案する。
その歴史的意義と潜在的社会的影響にもかかわらず、問い合わせの鍵となる発見は、しばしば長い文書の中に隠され、一般にはアクセスできないままである。
我々は,アイルランド政府の産業学校への探究の成果を変換し,単語の埋め込み,テキストの分類,可視化を通じて,テキストの探索によって新たな歴史的洞察を明らかにするインタラクティブなWebベースプラットフォームを提案する。
関連論文リスト
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - Visual Text Meets Low-level Vision: A Comprehensive Survey on Visual
Text Processing [4.057550183467041]
視覚テキスト処理の分野は、基本的な生成モデルの出現によって、研究の急増を経験してきた。
この分野での最近の進歩を包括的かつ多面的に分析する。
論文 参考訳(メタデータ) (2024-02-05T15:13:20Z) - Federated Learning for Generalization, Robustness, Fairness: A Survey
and Benchmark [55.898771405172155]
フェデレートラーニングは、異なる当事者間のプライバシー保護コラボレーションのための有望なパラダイムとして登場した。
我々は,連合学習研究の重要かつ最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2023-11-12T06:32:30Z) - A Review on Text-Based Emotion Detection -- Techniques, Applications,
Datasets, and Future Directions [4.257210316104905]
本稿では,2005年から2021年にかけてのテキストによる感情検出において,既存の文献の体系的な文献レビューを行う。
このレビューでは、IEEE、Science Direct、Scoopus、Web of Scienceの63の研究論文を精査し、4つの主要な研究課題に対処している。
様々な感情モデル、テクニック、特徴抽出方法、データセット、今後の方向性に関する研究課題についても概説した。
論文 参考訳(メタデータ) (2022-04-26T15:20:00Z) - Embedding Knowledge for Document Summarization: A Survey [66.76415502727802]
従来の研究は、知識を組み込んだ文書要約器が優れた消化器を生成するのに優れていたことを証明した。
本稿では,文書要約ビューに基づいて,知識と知識の埋め込みを再カプセル化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-24T04:36:07Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z) - A Survey of Knowledge-Enhanced Text Generation [81.24633231919137]
テキスト生成の目標は、機械を人間の言語で表現できるようにすることである。
入力テキストを出力テキストにマッピングすることを学ぶことで、目的を達成するために、様々なニューラルエンコーダデコーダモデルが提案されている。
この問題に対処するために、研究者は入力テキスト以外の様々な種類の知識を生成モデルに組み込むことを検討してきた。
論文 参考訳(メタデータ) (2020-10-09T06:46:46Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
テキスト要約は、原文書の短く凝縮した版を作成することを目的とした研究分野である。
現実世界のアプリケーションでは、ほとんどのデータは平易なテキスト形式ではない。
本稿では,現実のアプリケーションにおけるこれらの新しい要約タスクとアプローチについて調査する。
論文 参考訳(メタデータ) (2020-05-10T14:59:36Z) - Text Recognition in the Wild: A Survey [33.22076515689926]
本論文は,シーンテキスト認識の分野の全体像を提示する試みである。
この分野に参入する人々に対する包括的なリファレンスを提供しており、将来の研究を刺激するのに役立ちます。
論文 参考訳(メタデータ) (2020-05-07T13:57:04Z) - A Survey on Machine Reading Comprehension Systems [1.5293427903448022]
本稿では,機械読解システムの様々な側面に関する総合的な調査を行う。
我々は,2016年から2020年までの241件のレビュー論文をもとに,この分野の最近の傾向を概説する。
本研究は,近年,回答抽出から回答生成へと研究の焦点が変化していることを示すものである。
論文 参考訳(メタデータ) (2020-01-06T13:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。