論文の概要: PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback
- arxiv url: http://arxiv.org/abs/2308.02585v3
- Date: Tue, 30 Apr 2024 21:05:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 20:30:46.677854
- Title: PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback
- Title(参考訳): PARL:人間フィードバックからの強化学習における政策整合性統合フレームワーク
- Authors: Souradip Chakraborty, Amrit Singh Bedi, Alec Koppel, Dinesh Manocha, Huazheng Wang, Mengdi Wang, Furong Huang,
- Abstract要約: 我々は、強化学習におけるポリシーアライメントの最近強調された重要な問題に対処するために、新しい統合された二段階最適化ベースのフレームワーク、textsfPARLを提案する。
本フレームワークは, 上向きの目標(逆設計)の分布を, 下向きの最適変数で明示的にパラメータ化することにより, これらの問題に対処する。
その結果,提案したtextsfPARL が RL のアライメントの懸念に対処できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 106.63518036538163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel unified bilevel optimization-based framework, \textsf{PARL}, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning using utility or preference-based feedback. We identify a major gap within current algorithmic designs for solving policy alignment due to a lack of precise characterization of the dependence of the alignment objective on the data generated by policy trajectories. This shortfall contributes to the sub-optimal performance observed in contemporary algorithms. Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable (optimal policy for the designed reward). Interestingly, from an optimization perspective, our formulation leads to a new class of stochastic bilevel problems where the stochasticity at the upper objective depends upon the lower-level variable. {True to our best knowledge, this work presents the first formulation of the RLHF as a bilevel optimization problem which generalizes the existing RLHF formulations and addresses the existing distribution shift issues in RLHF formulations.} To demonstrate the efficacy of our formulation in resolving alignment issues in RL, we devised an algorithm named \textsf{A-PARL} to solve PARL problem, establishing sample complexity bounds of order $\mathcal{O}(1/T)$. Our empirical results substantiate that the proposed \textsf{PARL} can address the alignment concerns in RL by showing significant improvements (up to 63\% in terms of required samples) for policy alignment in large-scale environments of the Deepmind control suite and Meta world tasks.
- Abstract(参考訳): 本稿では,近年強調されている強化学習におけるポリシーアライメントの重要課題に,実用性や嗜好に基づくフィードバックを用いて対処するために,新しい統合された二段階最適化ベースのフレームワークである \textsf{PARL} を提案する。
政策トラジェクトリによって生成されたデータに対するアライメント目標の依存性の正確な特徴が欠如しているため、政策アライメントを解決するための現在のアルゴリズム設計における大きなギャップを同定する。
この欠点は、現代アルゴリズムで観測される準最適性能に寄与する。
提案手法は, 上位アライメント目標(リワード設計)の分布を, 下位最適変数(設計報酬の最適ポリシー)によって明示的にパラメータ化することにより, これらの課題に対処する。
興味深いことに、最適化の観点から、我々の定式化は、上位の目的の確率性が下位の変数に依存するような、新しい確率的二段階問題に繋がる。
この研究は、RLHFを2段階最適化問題として初めて定式化し、既存のRLHFの定式化を一般化し、RLHFの定式化における既存の分布シフト問題に対処する。
} RLにおけるアライメント問題の解法における定式化の有効性を示すため, PARL問題の解法としてtextsf{A-PARL} というアルゴリズムを考案し, 次数$\mathcal{O}(1/T)$の複雑性境界を定式化した。
提案手法は,DeepmindコントロールスイートとMeta Worldタスクの大規模環境におけるポリシーアライメントの大幅な改善(必要サンプルの63倍まで)を示すことにより,RLのアライメント問題に対処できることを示す。
関連論文リスト
- SAIL: Self-Improving Efficient Online Alignment of Large Language Models [56.59644677997827]
人間のフィードバックからの強化学習は、大きな言語モデルを人間の好みに合わせるための重要な方法である。
近年の文献では、オンラインRLHF法の設計に焦点が当てられているが、統一された概念的定式化はいまだに欠けている。
提案手法は,計算オーバーヘッドを最小限に抑えたオープンソースデータセットのアライメント性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-06-21T18:05:35Z) - e-COP : Episodic Constrained Optimization of Policies [12.854752753529151]
本稿では,制約付き強化学習(RL)のための第1ポリシー最適化アルゴリズムを提案する。
提案アルゴリズムは, エピソード設定に適応したSoTA (non-episodic) アルゴリズムと類似あるいは良好な性能を示す。
論文 参考訳(メタデータ) (2024-06-13T20:12:09Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Robust Data-driven Prescriptiveness Optimization [4.792851066169871]
本稿では、古典的経験的リスク目標最小化に代えて、規範性の係数が代わる分布的ロバストな文脈最適化モデルを提案する。
サンプル外データセットが様々な分散シフトを受ける場合の代替手法に対する結果のロバスト性を評価する。
論文 参考訳(メタデータ) (2023-06-09T14:56:06Z) - Provable Offline Preference-Based Reinforcement Learning [95.00042541409901]
本研究では,PbRL(Preference-based Reinforcement Learning)の問題について,人間のフィードバックを用いて検討する。
我々は、報酬が軌道全体にわたって定義できる一般的な報酬設定について考察する。
我々は, 軌道毎の集中性によって上界に拘束できる新しい単極集中係数を導入する。
論文 参考訳(メタデータ) (2023-05-24T07:11:26Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
本稿では,正規化RLを解くためのGPMDアルゴリズムを提案する。
我々は,このアルゴリズムが次元自由な方法で,全範囲の学習率に線形に収束することを実証した。
論文 参考訳(メタデータ) (2021-05-24T02:21:34Z) - Constrained Combinatorial Optimization with Reinforcement Learning [0.30938904602244344]
本稿では,RL(Deep Reinforcement Learning)を用いた制約付き最適化問題に対処する枠組みを提案する。
我々は、その定式化における制約に対処するために、Neural Combinatorial Optimization(NCO)理論を拡張した。
その文脈では、ソリューションは環境との相互作用に基づいて反復的に構築されます。
論文 参考訳(メタデータ) (2020-06-22T03:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。