論文の概要: SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents
- arxiv url: http://arxiv.org/abs/2308.02594v4
- Date: Tue, 22 Oct 2024 17:29:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:26:42.466083
- Title: SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents
- Title(参考訳): SMARLA:深部強化学習エージェントの安全モニタリングアプローチ
- Authors: Amirhossein Zolfagharian, Manel Abdellatif, Lionel C. Briand, Ramesh S,
- Abstract要約: 本稿では,Deep Reinforcement Learning (DRL)エージェント用に特別に設計されたブラックボックス安全監視手法SMARLAを紹介する。
SMARLAは機械学習を利用して、実行中のエージェントの動作を観察し、安全違反を予測する。
実験の結果、SMARLAは偽陽性率の低い安全違反を予測するのに正確であり、違反が起こる前にエージェントの実行の途中で早期に違反を予測することができることが明らかになった。
- 参考スコア(独自算出の注目度): 7.33319373357049
- License:
- Abstract: Deep Reinforcement Learning (DRL) has made significant advancements in various fields, such as autonomous driving, healthcare, and robotics, by enabling agents to learn optimal policies through interactions with their environments. However, the application of DRL in safety-critical domains presents challenges, particularly concerning the safety of the learned policies. DRL agents, which are focused on maximizing rewards, may select unsafe actions, leading to safety violations. Runtime safety monitoring is thus essential to ensure the safe operation of these agents, especially in unpredictable and dynamic environments. This paper introduces SMARLA, a black-box safety monitoring approach specifically designed for DRL agents. SMARLA utilizes machine learning to predict safety violations by observing the agent's behavior during execution. The approach is based on Q-values, which reflect the expected reward for taking actions in specific states. SMARLA employs state abstraction to reduce the complexity of the state space, enhancing the predictive capabilities of the monitoring model. Such abstraction enables the early detection of unsafe states, allowing for the implementation of corrective and preventive measures before incidents occur. We quantitatively and qualitatively validated SMARLA on three well-known case studies widely used in DRL research. Empirical results reveal that SMARLA is accurate at predicting safety violations, with a low false positive rate, and can predict violations at an early stage, approximately halfway through the execution of the agent, before violations occur. We also discuss different decision criteria, based on confidence intervals of the predicted violation probabilities, to trigger safety mechanisms aiming at a trade-off between early detection and low false positive rates.
- Abstract(参考訳): 深層強化学習(DRL)は、エージェントが環境とのインタラクションを通じて最適なポリシーを学習できるようにすることにより、自律運転、医療、ロボット工学など様々な分野で大きな進歩を遂げてきた。
しかし、DRLを安全クリティカルドメインに適用することは、特に学習ポリシーの安全性に関する課題を提起する。
報酬の最大化にフォーカスしたDRLエージェントは、安全でない行為を選択し、安全違反につながる可能性がある。
したがって、特に予測不能で動的環境において、これらのエージェントの安全な操作を保証するために、実行時の安全監視が不可欠である。
本稿では,DRLエージェントに特化して設計されたブラックボックス安全監視手法SMARLAを紹介する。
SMARLAは機械学習を利用して、実行中のエージェントの動作を観察し、安全違反を予測する。
このアプローチはQ値に基づいており、特定の状態におけるアクションを取ることで期待される報酬を反映している。
SMARLAは状態空間の複雑さを減らすために状態抽象化を採用し、モニタリングモデルの予測能力を高める。
このような抽象化により、安全でない状態の早期検出が可能になり、インシデントが発生する前に修正および予防措置の実装が可能になる。
DRL研究で広く用いられている3つのよく知られたケーススタディに対して,SMARLAを定量的に定性的に検証した。
実験の結果、SMARLAは偽陽性率の低い安全違反を予測するのに正確であり、違反が起こる前にエージェントの実行の途中で早期に違反を予測することができることが明らかになった。
また, 早期発見と偽陽性率の低いトレードオフを目的とした安全機構を誘導するために, 予測された違反確率の信頼区間に基づいて, 異なる判定基準を議論する。
関連論文リスト
- Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
我々は,定量化基盤真理とユーザにとっての明確な意義の両面から,批判的枠組みを定めようとしている。
エージェントがn連続的ランダム動作に対するポリシーから逸脱した場合の報酬の減少として真臨界を導入する。
我々はまた、真の臨界と統計的に単調な関係を持つ低オーバーヘッド計量であるプロキシ臨界の概念も導入する。
論文 参考訳(メタデータ) (2024-09-26T21:00:45Z) - Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
重大言語モデル(LLM)が悪意のある命令から脅威を守るためには、安全性の調整が不可欠である。
近年の研究では、過大な安全性の問題により、安全性に配慮したLCMは、良質な問い合わせを拒否する傾向にあることが明らかになっている。
過大な安全性の懸念を和らげるために,SCANS法を提案する。
論文 参考訳(メタデータ) (2024-08-21T10:01:34Z) - Anomalous State Sequence Modeling to Enhance Safety in Reinforcement Learning [0.0]
本稿では,RLの安全性を高めるために,異常状態列を利用した安全強化学習(RL)手法を提案する。
自動運転車を含む複数の安全クリティカルな環境の実験において、我々のソリューションアプローチはより安全なポリシーをうまく学習する。
論文 参考訳(メタデータ) (2024-07-29T10:30:07Z) - InferAct: Inferring Safe Actions for LLM-Based Agents Through Preemptive Evaluation and Human Feedback [70.54226917774933]
本稿では,リスク行動が実行される前に,潜在的なエラーを積極的に検出する新しい手法であるInferActを紹介する。
InferActは人間のプロキシとして機能し、安全でないアクションを検出し、ユーザーの介入を警告する。
広く使われている3つのタスクの実験は、InferActの有効性を示している。
論文 参考訳(メタデータ) (2024-07-16T15:24:44Z) - From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards [4.0645651835677565]
我々は、既に緩和されたバイアスのモデルを評価することにより、安全対策の有効性を検討する。
非有毒なプロンプトのセットを作成し、それをLlamaモデルの評価に用いる。
安全と健康のトレードオフは、サービス品質の害につながる可能性のある特定の人口集団にとってより顕著である。
論文 参考訳(メタデータ) (2024-03-20T00:22:38Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
本稿では、強化学習(RL)におけるトレーニング中の安全維持の問題に対処する。
探索中の効率的な進捗と安全性のトレードオフを扱う新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-18T16:09:43Z) - Safety Margins for Reinforcement Learning [53.10194953873209]
安全マージンを生成するためにプロキシ臨界度メトリクスをどのように活用するかを示す。
Atari 環境での APE-X と A3C からの学習方針に対するアプローチを評価する。
論文 参考訳(メタデータ) (2023-07-25T16:49:54Z) - Safe Deep Reinforcement Learning by Verifying Task-Level Properties [84.64203221849648]
コスト関数は、安全深層強化学習(DRL)において一般的に用いられる。
このコストは通常、国家空間における政策決定のリスクの定量化が難しいため、指標関数として符号化される。
本稿では,ドメイン知識を用いて,そのような状態に近接するリスクを定量化するための代替手法について検討する。
論文 参考訳(メタデータ) (2023-02-20T15:24:06Z) - Safe Reinforcement Learning via Shielding for POMDPs [29.058332307331785]
安全クリティカルな環境での強化学習(RL)は、破滅的な結果の決定を避けるためにエージェントを必要とする。
我々は,PMDPと最先端の深部RLアルゴリズムの密結合性について検討し,徹底的に評価する。
我々は、シールドを用いたRLエージェントが安全であるだけでなく、期待される報酬のより高い値に収束することを実証的に実証した。
論文 参考訳(メタデータ) (2022-04-02T03:51:55Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement Learning (RL)は、様々なシーケンシャルな意思決定タスクに対して最適なポリシーを学ぶ上で、有望なパフォーマンスを示している。
多くの現実世界のRL問題において、主な目的を最適化する以外に、エージェントは一定のレベルの安全性を満たすことが期待されている。
これらの制約に対処するために,リャプノフに基づく不確実性を考慮した安全なRLモデルを提案する。
論文 参考訳(メタデータ) (2021-07-29T13:08:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。