EndoDepthL: Lightweight Endoscopic Monocular Depth Estimation with
CNN-Transformer
- URL: http://arxiv.org/abs/2308.02716v2
- Date: Wed, 16 Aug 2023 17:39:15 GMT
- Title: EndoDepthL: Lightweight Endoscopic Monocular Depth Estimation with
CNN-Transformer
- Authors: Yangke Li
- Abstract summary: We propose a novel lightweight solution named EndoDepthL that integrates CNN and Transformers to predict multi-scale depth maps.
Our approach includes optimizing the network architecture, incorporating multi-scale dilated convolution, and a multi-channel attention mechanism.
To better evaluate the performance of monocular depth estimation in endoscopic imaging, we propose a novel complexity evaluation metric.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we address the key challenges concerning the accuracy and
effectiveness of depth estimation for endoscopic imaging, with a particular
emphasis on real-time inference and the impact of light reflections. We propose
a novel lightweight solution named EndoDepthL that integrates Convolutional
Neural Networks (CNN) and Transformers to predict multi-scale depth maps. Our
approach includes optimizing the network architecture, incorporating
multi-scale dilated convolution, and a multi-channel attention mechanism. We
also introduce a statistical confidence boundary mask to minimize the impact of
reflective areas. To better evaluate the performance of monocular depth
estimation in endoscopic imaging, we propose a novel complexity evaluation
metric that considers network parameter size, floating-point operations, and
inference frames per second. We comprehensively evaluate our proposed method
and compare it with existing baseline solutions. The results demonstrate that
EndoDepthL ensures depth estimation accuracy with a lightweight structure.
Related papers
- Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy [3.1186464715409983]
We introduce a novel fine-tuning strategy for the Depth Anything Model.
We integrate it with an intrinsic-based unsupervised monocular depth estimation framework.
Our results on the SCARED dataset show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-09-12T03:04:43Z) - Joint Self-supervised Depth and Optical Flow Estimation towards Dynamic
Objects [3.794605440322862]
In this work, we construct a joint inter-frame-supervised depth and optical flow estimation framework.
For motion segmentation, we adaptively segment the preliminary estimated optical flow map with large areas of connectivity.
Our proposed joint depth and optical flow estimation outperforms existing depth estimators on the KITTI Depth dataset.
arXiv Detail & Related papers (2023-09-07T04:00:52Z) - Global-Local Path Networks for Monocular Depth Estimation with Vertical
CutDepth [24.897377434844266]
We propose a novel structure and training strategy for monocular depth estimation.
We deploy a hierarchical transformer encoder to capture and convey the global context, and design a lightweight yet powerful decoder.
Our network achieves state-of-the-art performance over the challenging depth dataset NYU Depth V2.
arXiv Detail & Related papers (2022-01-19T06:37:21Z) - Scale-aware direct monocular odometry [4.111899441919165]
We present a framework for direct monocular odometry based on depth prediction from a deep neural network.
Our proposal largely outperforms classic monocular SLAM, being 5 to 9 times more precise, with an accuracy which is closer to that of stereo systems.
arXiv Detail & Related papers (2021-09-21T10:30:15Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - Monocular Depth Estimation Primed by Salient Point Detection and
Normalized Hessian Loss [43.950140695759764]
We propose an accurate and lightweight framework for monocular depth estimation based on a self-attention mechanism stemming from salient point detection.
We introduce a normalized Hessian loss term invariant to scaling and shear along the depth direction, which is shown to substantially improve the accuracy.
The proposed method achieves state-of-the-art results on NYU-Depth-v2 and KITTI while using 3.1-38.4 times smaller model in terms of the number of parameters than baseline approaches.
arXiv Detail & Related papers (2021-08-25T07:51:09Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
A novel convolutional neural network (CNN)-based framework is developed for light field reconstruction from a sparse set of views.
We demonstrate the high performance and robustness of the proposed framework compared with state-of-the-art algorithms.
arXiv Detail & Related papers (2021-03-24T08:16:32Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
We present a lightweight, tightly-coupled deep depth network and visual-inertial odometry system.
We provide the network with previously marginalized sparse features from VIO to increase the accuracy of initial depth prediction.
We show that it can run in real-time with single-thread execution while utilizing GPU acceleration only for the network and code Jacobian.
arXiv Detail & Related papers (2020-12-18T09:42:54Z) - RetiNerveNet: Using Recursive Deep Learning to Estimate Pointwise 24-2
Visual Field Data based on Retinal Structure [109.33721060718392]
glaucoma is the leading cause of irreversible blindness in the world, affecting over 70 million people.
Due to the Standard Automated Perimetry (SAP) test's innate difficulty and its high test-retest variability, we propose the RetiNerveNet.
arXiv Detail & Related papers (2020-10-15T03:09:08Z) - Adaptive confidence thresholding for monocular depth estimation [83.06265443599521]
We propose a new approach to leverage pseudo ground truth depth maps of stereo images generated from self-supervised stereo matching methods.
The confidence map of the pseudo ground truth depth map is estimated to mitigate performance degeneration by inaccurate pseudo depth maps.
Experimental results demonstrate superior performance to state-of-the-art monocular depth estimation methods.
arXiv Detail & Related papers (2020-09-27T13:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.