論文の概要: A Comprehensive Analysis of Real-World Image Captioning and Scene
Identification
- arxiv url: http://arxiv.org/abs/2308.02833v1
- Date: Sat, 5 Aug 2023 10:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-08 18:30:47.682465
- Title: A Comprehensive Analysis of Real-World Image Captioning and Scene
Identification
- Title(参考訳): 実世界画像キャプションとシーン識別の包括的分析
- Authors: Sai Suprabhanu Nallapaneni, Subrahmanyam Konakanchi
- Abstract要約: 実世界のイメージキャプションには、多くの注意点を持つ複雑で動的な環境が含まれる。
本稿では,異なる符号化機構上に構築された各種モデルの性能評価を行う。
このデータセットは、より説明的なキャプションを生成するIC3アプローチを使用してキャプションされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image captioning is a computer vision task that involves generating natural
language descriptions for images. This method has numerous applications in
various domains, including image retrieval systems, medicine, and various
industries. However, while there has been significant research in image
captioning, most studies have focused on high quality images or controlled
environments, without exploring the challenges of real-world image captioning.
Real-world image captioning involves complex and dynamic environments with
numerous points of attention, with images which are often very poor in quality,
making it a challenging task, even for humans. This paper evaluates the
performance of various models that are built on top of different encoding
mechanisms, language decoders and training procedures using a newly created
real-world dataset that consists of over 800+ images of over 65 different scene
classes, built using MIT Indoor scenes dataset. This dataset is captioned using
the IC3 approach that generates more descriptive captions by summarizing the
details that are covered by standard image captioning models from unique
view-points of the image.
- Abstract(参考訳): 画像キャプションは、画像の自然言語記述を生成するコンピュータビジョンタスクである。
この方法は、画像検索システム、医療、および様々な産業を含む様々な分野に多くの応用がある。
しかし、画像キャプションの研究は盛んに行われているが、ほとんどの研究は、実世界の画像キャプションの課題を探求することなく、高品質な画像や制御環境に焦点を当てている。
実世界のイメージキャプションは、多くの注意点を持つ複雑でダイナミックな環境を伴い、品質が極めて低い場合が多いため、人間にとっても難しい課題である。
本稿では,MIT屋内シーンデータセットを用いて構築された65以上のシーンクラスの800以上の画像からなる実世界のデータセットを用いて,様々なエンコーディング機構,言語デコーダ,訓練手順に基づいて構築された各種モデルの性能を評価する。
このデータセットは、画像のユニークな視点から標準画像キャプションモデルによってカバーされる詳細を要約することにより、より記述的なキャプションを生成するic3アプローチを使用してキャプションされる。
関連論文リスト
- Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
Leopardは、複数のテキストリッチイメージを含む視覚言語タスクを扱うビジョン言語モデルである。
まず、テキストリッチでマルチイメージのシナリオに合わせて、約100万の高品質なマルチモーダル命令チューニングデータをキュレートした。
第2に,視覚列長の割り当てを動的に最適化する適応型高解像度マルチイメージ符号化モジュールを開発した。
論文 参考訳(メタデータ) (2024-10-02T16:55:01Z) - What Makes for Good Image Captions? [50.48589893443939]
我々のフレームワークは、優れた画像キャプションは、情報的に十分であり、最小限の冗長であり、人間によって容易に理解できるという3つの重要な側面のバランスをとるべきであると仮定している。
本稿では,局所的な視覚情報とグローバルな視覚情報を統合することで,豊かなキャプションを生成するParamid of Captions(PoCa)手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T12:49:57Z) - Learning text-to-video retrieval from image captioning [59.81537951811595]
本稿では,未収録ビデオを用いたテキスト・ビデオ検索訓練のプロトコルについて述べる。
i) ビデオのラベルにアクセスできず、(ii) テキスト形式でラベル付き画像にアクセスすると仮定する。
画像キャプションによるビデオフレームの自動ラベル付けにより,テキスト対ビデオ検索のトレーニングが可能になることを示す。
論文 参考訳(メタデータ) (2024-04-26T15:56:08Z) - Towards Automatic Satellite Images Captions Generation Using Large
Language Models [0.5439020425819]
リモートセンシング画像のキャプションを自動的に収集するARSIC(Automatic Remote Sensing Image Captioning)を提案する。
また、事前学習された生成画像2テキストモデル(GIT)を用いて、リモートセンシング画像の高品質なキャプションを生成するベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2023-10-17T16:45:47Z) - CapText: Large Language Model-based Caption Generation From Image
Context and Description [0.0]
テキスト記述と文脈のみからキャプションを生成する新しいアプローチを提案し,評価する。
提案手法は,OSCAR-VinVL などの最先端画像テキストアライメントモデルにおいて,CIDEr メトリック上でのタスクにおいて優れる。
論文 参考訳(メタデータ) (2023-06-01T02:40:44Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
ストーリービジュアライゼーションは、複数文のストーリーで各文をナレーションする一連の画像を生成することを目的としている。
現在の作業は、その固定されたアーキテクチャと入力モダリティの多様性のため、セマンティックなミスアライメントの問題に直面している。
GANに基づく生成モデルにおいて,テキストと画像表現のセマンティックアライメントを学習し,それらのセマンティックレベルを一致させる方法について検討する。
論文 参考訳(メタデータ) (2022-11-14T11:41:44Z) - Word-Level Fine-Grained Story Visualization [58.16484259508973]
ストーリービジュアライゼーションは、動的シーンやキャラクターをまたいだグローバルな一貫性を備えた多文ストーリーで各文をナレーションする一連の画像を生成することを目的としている。
現在の作業は画像の品質と一貫性に苦慮しており、追加のセマンティック情報や補助的なキャプションネットワークに依存している。
まず,全ての物語文からの単語情報を取り入れた新しい文表現を導入し,不整合問題を緩和する。
そこで本稿では,画像の質とストーリーの整合性を改善するために,融合機能を備えた新たな識別器を提案する。
論文 参考訳(メタデータ) (2022-08-03T21:01:47Z) - Image Captioning based on Feature Refinement and Reflective Decoding [0.0]
本稿では,エンコーダデコーダを用いた画像キャプションシステムを提案する。
画像の各領域の空間的特徴とグローバルな特徴をResNet-101をバックボーンとしてFaster R-CNNを使って抽出する。
デコーダはアテンションベースのリカレントモジュールとリフレクティブアテンションモジュールからなり、デコーダの長期的なシーケンシャル依存関係をモデル化する能力を高める。
論文 参考訳(メタデータ) (2022-06-16T07:56:28Z) - CapOnImage: Context-driven Dense-Captioning on Image [13.604173177437536]
画像上のキャプション(CapOnImage)と呼ばれる新しいタスクを導入し、コンテキスト情報に基づいて画像の異なる場所で高密度キャプションを生成する。
テキストと画像位置の対応を段階的に学習するマルチレベル事前学習タスクを備えたマルチモーダル事前学習モデルを提案する。
他の画像キャプションモデルと比較すると、キャプション精度と多様性の両面で最良の結果が得られる。
論文 参考訳(メタデータ) (2022-04-27T14:40:31Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - Iconographic Image Captioning for Artworks [2.3859169601259342]
本研究は,Iconclass分類システムの概念を付加したアート画像の大規模データセットを利用する。
アノテーションはクリーンなテキスト記述に処理され、画像キャプションタスク上でディープニューラルネットワークモデルのトレーニングに適したデータセットを生成する。
画像データセットを用いて、トランスフォーマーに基づく視覚言語事前学習モデルを微調整する。
生成したキャプションの品質と新たなデータに一般化するモデルの能力について,新たな絵画コレクションにモデルを適用し,一般的なキャプションと芸術ジャンルの関係を解析することにより検討する。
論文 参考訳(メタデータ) (2021-02-07T23:11:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。