Meta-learning in healthcare: A survey
- URL: http://arxiv.org/abs/2308.02877v2
- Date: Sat, 8 Jun 2024 17:02:29 GMT
- Title: Meta-learning in healthcare: A survey
- Authors: Alireza Rafiei, Ronald Moore, Sina Jahromi, Farshid Hajati, Rishikesan Kamaleswaran,
- Abstract summary: Meta-learning aims at improving the model's capabilities by employing prior knowledge and experience.
We first describe the theoretical foundations and pivotal methods of meta-learning.
We then divide the employed meta-learning approaches in the healthcare domain into two main categories of multi/single-task learning and many/few-shot learning.
- Score: 3.245586096021802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a subset of machine learning, meta-learning, or learning to learn, aims at improving the model's capabilities by employing prior knowledge and experience. A meta-learning paradigm can appropriately tackle the conventional challenges of traditional learning approaches, such as insufficient number of samples, domain shifts, and generalization. These unique characteristics position meta-learning as a suitable choice for developing influential solutions in various healthcare contexts, where the available data is often insufficient, and the data collection methodologies are different. This survey discusses meta-learning broad applications in the healthcare domain to provide insight into how and where it can address critical healthcare challenges. We first describe the theoretical foundations and pivotal methods of meta-learning. We then divide the employed meta-learning approaches in the healthcare domain into two main categories of multi/single-task learning and many/few-shot learning and survey the studies. Finally, we highlight the current challenges in meta-learning research, discuss the potential solutions, and provide future perspectives on meta-learning in healthcare.
Related papers
- Advances and Challenges in Meta-Learning: A Technical Review [7.149235250835041]
Meta-learning empowers learning systems with the ability to acquire knowledge from multiple tasks.
This review emphasizes its importance in real-world applications where data may be scarce or expensive to obtain.
arXiv Detail & Related papers (2023-07-10T17:32:15Z) - Meta-learning approaches for few-shot learning: A survey of recent
advances [12.052118555436081]
Despite its success in learning deeper multi-dimensional data, the performance of deep learning declines on new unseen tasks.
Deep learning is notorious for poor generalization from few samples.
This survey first briefly introduces meta-learning and then investigates state-of-the-art meta-learning methods.
arXiv Detail & Related papers (2023-03-13T22:20:39Z) - Learning Physical Concepts in Cyber-Physical Systems: A Case Study [72.74318982275052]
We provide an overview of the current state of research regarding methods for learning physical concepts in time series data.
We also analyze the most important methods from the current state of the art using the example of a three-tank system.
arXiv Detail & Related papers (2021-11-28T14:24:52Z) - Multimodality in Meta-Learning: A Comprehensive Survey [34.69292359136745]
This survey provides a comprehensive overview of the multimodality-based meta-learning landscape.
We first formalize the definition of meta-learning and multimodality, along with the research challenges in this growing field.
We then propose a new taxonomy to systematically discuss typical meta-learning algorithms combined with multimodal tasks.
arXiv Detail & Related papers (2021-09-28T09:16:12Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - Variable-Shot Adaptation for Online Meta-Learning [123.47725004094472]
We study the problem of learning new tasks from a small, fixed number of examples, by meta-learning across static data from a set of previous tasks.
We find that meta-learning solves the full task set with fewer overall labels and greater cumulative performance, compared to standard supervised methods.
These results suggest that meta-learning is an important ingredient for building learning systems that continuously learn and improve over a sequence of problems.
arXiv Detail & Related papers (2020-12-14T18:05:24Z) - A Comprehensive Overview and Survey of Recent Advances in Meta-Learning [0.0]
Meta-learning also known as learning-to-learn which seeks rapid and accurate model adaptation to unseen tasks.
We briefly introduce meta-learning methodologies in the following categories: black-box meta-learning, metric-based meta-learning, layered meta-learning and Bayesian meta-learning framework.
arXiv Detail & Related papers (2020-04-17T03:11:08Z) - Meta-Learning in Neural Networks: A Survey [4.588028371034406]
This survey describes the contemporary meta-learning landscape.
We first discuss definitions of meta-learning and position it with respect to related fields.
We then propose a new taxonomy that provides a more comprehensive breakdown of the space of meta-learning methods.
arXiv Detail & Related papers (2020-04-11T16:34:24Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
We provide fast, sample-efficient algorithms to address the dual challenges of learning a common set of features from multiple, related tasks, and transferring this knowledge to new, unseen tasks.
We also provide information-theoretic lower bounds on the sample complexity of learning these linear features.
arXiv Detail & Related papers (2020-02-26T18:21:34Z) - Incremental Meta-Learning via Indirect Discriminant Alignment [118.61152684795178]
We develop a notion of incremental learning during the meta-training phase of meta-learning.
Our approach performs favorably at test time as compared to training a model with the full meta-training set.
arXiv Detail & Related papers (2020-02-11T01:39:12Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
We aim to provide a principled, unifying framework by revisiting and strengthening the connection between meta-learning and traditional supervised learning.
By treating pairs of task-specific data sets and target models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning.
This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning.
arXiv Detail & Related papers (2020-02-03T06:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.