Robust estimation of exposure ratios in multi-exposure image stacks
- URL: http://arxiv.org/abs/2308.02968v2
- Date: Sat, 12 Aug 2023 10:36:52 GMT
- Title: Robust estimation of exposure ratios in multi-exposure image stacks
- Authors: Param Hanji and Rafa{\l} K. Mantiuk
- Abstract summary: We propose to estimate exposure ratios directly from the input images.
We derive the exposure time estimation as an optimization problem, in which pixels are selected from pairs of exposures to minimize estimation error caused by camera noise.
We demonstrate that the estimation can be easily made robust to pixel misalignment caused by camera or object motion by collecting pixels from multiple spatial tiles.
- Score: 12.449313419096821
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Merging multi-exposure image stacks into a high dynamic range (HDR) image
requires knowledge of accurate exposure times. When exposure times are
inaccurate, for example, when they are extracted from a camera's EXIF metadata,
the reconstructed HDR images reveal banding artifacts at smooth gradients. To
remedy this, we propose to estimate exposure ratios directly from the input
images. We derive the exposure time estimation as an optimization problem, in
which pixels are selected from pairs of exposures to minimize estimation error
caused by camera noise. When pixel values are represented in the logarithmic
domain, the problem can be solved efficiently using a linear solver. We
demonstrate that the estimation can be easily made robust to pixel misalignment
caused by camera or object motion by collecting pixels from multiple spatial
tiles. The proposed automatic exposure estimation and alignment eliminates
banding artifacts in popular datasets and is essential for applications that
require physically accurate reconstructions, such as measuring the modulation
transfer function of a display. The code for the method is available.
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
In this work, we aim ambitiously for a more realistic and challenging task - joint video multi-frame and deblurring under unknown exposure time.
We first adopt a variant of supervised contrastive learning to construct an exposure-aware representation from input blurred frames.
We then build our video reconstruction network upon the exposure and motion representation by progressive exposure-adaptive convolution and motion refinement.
arXiv Detail & Related papers (2023-03-27T09:43:42Z) - Multi-Exposure HDR Composition by Gated Swin Transformer [8.619880437958525]
This paper provides a novel multi-exposure fusion model based on Swin Transformer.
We exploit the long distance contextual dependency in the exposure-space pyramid by the self-attention mechanism.
Experiments show that our model achieves the accuracy on par with current top performing multi-exposure HDR imaging models.
arXiv Detail & Related papers (2023-03-15T15:38:43Z) - MELON: NeRF with Unposed Images in SO(3) [35.093700416540436]
We show that a neural network can reconstruct a neural radiance field from unposed images with state-of-the-art accuracy while requiring ten times fewer views than adversarial approaches.
Using a neural-network to regularize pose estimation, we demonstrate that our method can reconstruct a neural radiance field from unposed images with state-of-the-art accuracy while requiring ten times fewer views than adversarial approaches.
arXiv Detail & Related papers (2023-03-14T17:33:39Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
We show that in a ''long-burst'', forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth.
We devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion.
arXiv Detail & Related papers (2022-12-22T18:54:34Z) - Robustifying the Multi-Scale Representation of Neural Radiance Fields [86.69338893753886]
We present a robust multi-scale neural radiance fields representation approach to overcome both real-world imaging issues.
Our method handles multi-scale imaging effects and camera-pose estimation problems with NeRF-inspired approaches.
We demonstrate, with examples, that for an accurate neural representation of an object from day-to-day acquired multi-view images, it is crucial to have precise camera-pose estimates.
arXiv Detail & Related papers (2022-10-09T11:46:45Z) - CuDi: Curve Distillation for Efficient and Controllable Exposure
Adjustment [86.97592472794724]
We present Curve Distillation, CuDi, for efficient and controllable exposure adjustment without the requirement of paired or unpaired data.
Our method inherits the zero-reference learning and curve-based framework from an effective low-light image enhancement method, Zero-DCE.
We show that our method is appealing for its fast, robust, and flexible performance, outperforming state-of-the-art methods in real scenes.
arXiv Detail & Related papers (2022-07-28T17:53:46Z) - Learning Spatially Varying Pixel Exposures for Motion Deblurring [49.07867902677453]
We present a novel approach of leveraging spatially varying pixel exposures for motion deblurring.
Our work illustrates the promising role that focal-plane sensor--processors can play in the future of computational imaging.
arXiv Detail & Related papers (2022-04-14T23:41:49Z) - IMU-Assisted Learning of Single-View Rolling Shutter Correction [16.242924916178282]
Rolling shutter distortion is highly undesirable for photography and computer vision algorithms.
We propose a deep neural network to predict depth and row-wise pose from a single image for rolling shutter correction.
arXiv Detail & Related papers (2020-11-05T21:33:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.