論文の概要: Towards Multiple References Era -- Addressing Data Leakage and Limited
Reference Diversity in NLG Evaluation
- arxiv url: http://arxiv.org/abs/2308.03131v2
- Date: Tue, 8 Aug 2023 02:01:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-09 15:54:20.683776
- Title: Towards Multiple References Era -- Addressing Data Leakage and Limited
Reference Diversity in NLG Evaluation
- Title(参考訳): 複数参照時代に向けて -- NLG評価におけるデータ漏洩と限定参照多様性の対応
- Authors: Xianfeng Zeng, Yijin Liu, Fandong Meng and Jie Zhou
- Abstract要約: BLEUやchrFのようなN-gramマッチングに基づく評価指標は、自然言語生成(NLG)タスクで広く利用されている。
近年の研究では、これらのマッチングベースの指標と人間の評価との間には弱い相関関係が示されている。
本稿では,これらの指標と人的評価の整合性を高めるために,テキストマルチプル参照を利用することを提案する。
- 参考スコア(独自算出の注目度): 55.92852268168816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: N-gram matching-based evaluation metrics, such as BLEU and chrF, are widely
utilized across a range of natural language generation (NLG) tasks. However,
recent studies have revealed a weak correlation between these matching-based
metrics and human evaluations, especially when compared with neural-based
metrics like BLEURT. In this paper, we conjecture that the performance
bottleneck in matching-based metrics may be caused by the limited diversity of
references. To address this issue, we propose to utilize \textit{multiple
references} to enhance the consistency between these metrics and human
evaluations. Within the WMT Metrics benchmarks, we observe that the
multi-references F200spBLEU surpasses the conventional single-reference one by
an accuracy improvement of 7.2\%. Remarkably, it also exceeds the neural-based
BERTscore by an accuracy enhancement of 3.9\%. Moreover, we observe that the
data leakage issue in large language models (LLMs) can be mitigated to a large
extent by our multi-reference metric. We release the code and data at
\url{https://github.com/SefaZeng/LLM-Ref}
- Abstract(参考訳): BLEUやchrFのようなN-gramマッチングに基づく評価指標は、自然言語生成(NLG)タスクで広く利用されている。
しかし、最近の研究では、これらのマッチングベースのメトリクスと人間の評価との間に弱い相関関係が明らかになっている。
本稿では、マッチングベースのメトリクスにおけるパフォーマンスボトルネックは、参照の多様性の制限によって引き起こされる可能性があると推測する。
この問題に対処するために,これらの指標と人的評価との整合性を高めるために, textit{multiple references} を用いることを提案する。
wmtメトリックベンチマークでは、マルチリファレンスf200spbleuが従来のシングルリファレンスより7.2\%精度が向上している。
驚くべきことに、ニューラルネットワークベースのbertscoreを3.9\%の精度向上で上回っている。
さらに,大規模言語モデル (LLM) におけるデータ漏洩問題は,マルチリファレンス・メトリックによって大幅に軽減できることがわかった。
コードとデータは \url{https://github.com/sefazeng/llm-ref} でリリースします。
関連論文リスト
- Using Similarity to Evaluate Factual Consistency in Summaries [2.7595794227140056]
抽象要約器は流動的な要約を生成するが、生成したテキストの事実性は保証されない。
本稿では,ゼロショット事実性評価尺度であるSBERTScoreを提案する。
実験の結果,SBERTScoreでは,各手法の強度が異なることが示唆された。
論文 参考訳(メタデータ) (2024-09-23T15:02:38Z) - Revisiting Evaluation Metrics for Semantic Segmentation: Optimization
and Evaluation of Fine-grained Intersection over Union [113.20223082664681]
そこで本研究では,mIoUsの微細化と,それに対応する最悪の指標を提案する。
これらのきめ細かいメトリクスは、大きなオブジェクトに対するバイアスの低減、よりリッチな統計情報、モデルとデータセット監査に関する貴重な洞察を提供する。
ベンチマークでは,1つの測定値に基づかないことの必要性を強調し,微細なmIoUsが大きな物体への偏りを減少させることを確認した。
論文 参考訳(メタデータ) (2023-10-30T03:45:15Z) - Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References [123.39034752499076]
Div-Refは、参照数を増やして評価ベンチマークを強化する方法である。
本研究では,参照表現の多様化が自動評価と人的評価の相関性を大幅に向上させることを示す実験を行った。
論文 参考訳(メタデータ) (2023-05-24T11:53:29Z) - On the Blind Spots of Model-Based Evaluation Metrics for Text Generation [79.01422521024834]
テキスト生成評価指標のロバスト性分析に有用であるが,しばしば無視される手法を探索する。
我々は、幅広い潜在的な誤差を設計、合成し、それらが測定値の余計な低下をもたらすかどうかを確認する。
私たちの実験では、既存のメトリクスの興味深い不感、バイアス、あるいは抜け穴が明らかになりました。
論文 参考訳(メタデータ) (2022-12-20T06:24:25Z) - Not All Errors are Equal: Learning Text Generation Metrics using
Stratified Error Synthesis [79.18261352971284]
人間のアノテーションを必要とせずに、人間の判断と高い相関関係を持つモデルベースの計量であるSESCOREを紹介する。
既存の指標に対してSESCOREを評価し,そのスコアと人間の評価との関係を比較検討した。
SESCOREは、人間による注釈付きトレーニングデータを受け取らず、最高の教師付きメトリックCOMETに匹敵するパフォーマンスを達成している。
論文 参考訳(メタデータ) (2022-10-10T22:30:26Z) - MENLI: Robust Evaluation Metrics from Natural Language Inference [26.53850343633923]
最近提案されたBERTベースのテキスト生成評価指標は、標準ベンチマークでは良好に機能するが、敵攻撃には弱い。
自然言語推論(NLI)に基づく評価指標を開発する。
我々のNLIベースのメトリクスは、最近のBERTベースのメトリクスよりも攻撃に対してより堅牢であることを示す。
論文 参考訳(メタデータ) (2022-08-15T16:30:14Z) - Language Model Augmented Relevance Score [2.8314622515446835]
Language Model Augmented Relevance Score (MARS)は、NLG評価のための新しい文脈対応メトリックである。
MARSは、強化学習によってガイドされる既製の言語モデルを使用して、生成コンテキストと利用可能な人間の参照の両方を考慮した拡張参照を生成する。
論文 参考訳(メタデータ) (2021-08-19T03:59:23Z) - REAM$\sharp$: An Enhancement Approach to Reference-based Evaluation
Metrics for Open-domain Dialog Generation [63.46331073232526]
オープンドメイン対話システムにおける参照ベースのEvAluation Metricsの拡張手法を提案する。
予測モデルは、与えられた基準セットの信頼性を推定するように設計されている。
本稿では,その予測結果が参照集合の増大にどのように役立つかを示し,測定値の信頼性を向上させる。
論文 参考訳(メタデータ) (2021-05-30T10:04:13Z) - BLEU might be Guilty but References are not Innocent [34.817010352734]
我々は,参照を収集し,その価値を自動評価で比較するための異なる手法について検討する。
典型的参照が多様性に乏しく、翻訳言語を中心にして、パラフレーズ化タスクを開発することに動機づけられた。
提案手法は,WMT 2019英語をドイツ語に投稿するだけでなく,バックトランスレーションやAPE拡張MT出力に対しても高い相関性を示す。
論文 参考訳(メタデータ) (2020-04-13T16:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。