論文の概要: Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies
- arxiv url: http://arxiv.org/abs/2308.03188v2
- Date: Wed, 30 Aug 2023 03:47:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-31 16:34:04.907413
- Title: Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies
- Title(参考訳): 大規模言語モデルの自動修正:多様な自己補正戦略の展望
- Authors: Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang,
William Yang Wang
- Abstract要約: 大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
- 参考スコア(独自算出の注目度): 104.32199881187607
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable performance across
a wide array of NLP tasks. However, their efficacy is undermined by undesired
and inconsistent behaviors, including hallucination, unfaithful reasoning, and
toxic content. A promising approach to rectify these flaws is self-correction,
where the LLM itself is prompted or guided to fix problems in its own output.
Techniques leveraging automated feedback -- either produced by the LLM itself
or some external system -- are of particular interest as they are a promising
way to make LLM-based solutions more practical and deployable with minimal
human feedback. This paper presents a comprehensive review of this emerging
class of techniques. We analyze and taxonomize a wide array of recent work
utilizing these strategies, including training-time, generation-time, and
post-hoc correction. We also summarize the major applications of this strategy
and conclude by discussing future directions and challenges.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
しかし、その効果は幻覚、不誠実な推論、有害な内容など、望ましくない、一貫性のない行動によって損なわれる。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
LLM自体や外部システムによって生み出される自動フィードバックを活用する技術は、LLMベースのソリューションをより実用的で、最小限のフィードバックでデプロイ可能にする有望な方法であるため、特に興味深い。
本稿では,この新しい手法の包括的レビューを行う。
我々は、トレーニング時間、ジェネレーション時間、ポストホック補正を含む、これらの戦略を利用した様々な最近の研究を分析し、分類する。
また,この戦略の主な応用を要約し,今後の方向性と課題を論じて結論づける。
関連論文リスト
- Can LLMs plan paths with extra hints from solvers? [2.874944508343474]
大規模言語モデル(LLM)は、自然言語処理、数学的問題解決、プログラム合成に関連するタスクにおいて顕著な能力を示している。
本稿では,従来のロボット計画課題の解決において,解法生成フィードバックを統合することでLCM性能を向上させる手法について検討する。
論文 参考訳(メタデータ) (2024-10-07T14:00:08Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
我々は,Bloomの分類にインスパイアされた新しいプロンプト技術であるBloomWiseを導入し,Large Language Models(LLMs)の性能を向上させる。
より洗練された認知スキルを身につける必要性に関する決定は、LLMによる自己評価に基づいている。
4つの一般的な算数推論データセットの広範な実験において,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-05T09:27:52Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Adversarial Math Word Problem Generation [6.92510069380188]
大規模言語モデル(LLM)の公平な評価を保証するための新しいパラダイムを提案する。
評価を目的とした質問の構造と難易度を保持する逆例を生成するが,LLMでは解けない。
我々は様々なオープン・クローズド・ソース LLM の実験を行い、定量的かつ質的に、我々の手法が数学の問題解決能力を著しく低下させることを示した。
論文 参考訳(メタデータ) (2024-02-27T22:07:52Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
LLM(Large Language Models)は、非並列テキスト生成機能を備えた画期的な技術として登場した。
生成したコンテンツの正確性と適切性に関する懸念が続いている。
現代の方法論である自己補正がこれらの問題に対する対策として提案されている。
論文 参考訳(メタデータ) (2023-10-03T04:56:12Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
本稿では, LLMのモデル編集に関わる問題, 方法, 機会を深く探究する。
本稿では,モデル編集に関わるタスク定義と課題の概観と,現在処理中の最も進歩的な手法の詳細な実証分析について述べる。
本研究の目的は,各編集手法の有効性と実現可能性に関する貴重な知見を提供することであり,特定のタスクやコンテキストに対して,最も適切な方法の選択に関する情報決定を行う上で,コミュニティを支援することである。
論文 参考訳(メタデータ) (2023-05-22T16:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。