論文の概要: GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis
- arxiv url: http://arxiv.org/abs/2308.03314v3
- Date: Mon, 6 May 2024 09:00:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 01:06:19.539433
- Title: GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis
- Title(参考訳): GPTScan: GPTとプログラム分析を組み合わせたスマートコントラクトにおける論理脆弱性の検出
- Authors: Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu, Xiaofei Xie, Yang Liu,
- Abstract要約: 本稿では,GPTと静的解析を組み合わせたGPTScanを提案する。
各ロジックの脆弱性タイプをシナリオとプロパティに分割することで、GPTScanは候補の脆弱性とGPTをマッチさせる。
人間の監査官が見逃した9つの新たな脆弱性を含む70%以上のリコールで、地上の真実的ロジックの脆弱性を効果的に検出する。
- 参考スコア(独自算出の注目度): 26.081673382969615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart contracts are prone to various vulnerabilities, leading to substantial financial losses over time. Current analysis tools mainly target vulnerabilities with fixed control or data-flow patterns, such as re-entrancy and integer overflow. However, a recent study on Web3 security bugs revealed that about 80% of these bugs cannot be audited by existing tools due to the lack of domain-specific property description and checking. Given recent advances in Large Language Models (LLMs), it is worth exploring how Generative Pre-training Transformer (GPT) could aid in detecting logicc vulnerabilities. In this paper, we propose GPTScan, the first tool combining GPT with static analysis for smart contract logic vulnerability detection. Instead of relying solely on GPT to identify vulnerabilities, which can lead to high false positives and is limited by GPT's pre-trained knowledge, we utilize GPT as a versatile code understanding tool. By breaking down each logic vulnerability type into scenarios and properties, GPTScan matches candidate vulnerabilities with GPT. To enhance accuracy, GPTScan further instructs GPT to intelligently recognize key variables and statements, which are then validated by static confirmation. Evaluation on diverse datasets with around 400 contract projects and 3K Solidity files shows that GPTScan achieves high precision (over 90%) for token contracts and acceptable precision (57.14%) for large projects like Web3Bugs. It effectively detects ground-truth logic vulnerabilities with a recall of over 70%, including 9 new vulnerabilities missed by human auditors. GPTScan is fast and cost-effective, taking an average of 14.39 seconds and 0.01 USD to scan per thousand lines of Solidity code. Moreover, static confirmation helps GPTScan reduce two-thirds of false positives.
- Abstract(参考訳): スマートコントラクトはさまざまな脆弱性を抱える傾向にあり、時間の経過とともに大きな損失をもたらします。
現在の分析ツールは、主に、修正されたコントロールや、再エンタテインメントや整数オーバーフローといったデータフローパターンによる脆弱性をターゲットにしている。
しかし、Web3のセキュリティバグに関する最近の調査では、ドメイン固有のプロパティ記述やチェックの欠如により、これらのバグの約80%が既存のツールで監査できないことが明らかになった。
LLM(Large Language Models)の最近の進歩を考えると、GPT(Generative Pre-training Transformer)がロジックの脆弱性の検出にどのように役立つかを検討する価値がある。
本稿では,GPTと静的解析を組み合わせたGPTScanを提案する。
GPTの事前訓練された知識によって制限される脆弱性を識別するためにのみGPTに頼るのではなく、汎用的なコード理解ツールとしてGPTを利用する。
各ロジックの脆弱性タイプをシナリオとプロパティに分割することで、GPTScanは候補の脆弱性とGPTをマッチさせる。
GPTScanはさらに、GPTにキー変数とステートメントをインテリジェントに認識するよう指示し、静的確認によって検証する。
約400のコントラクトプロジェクトと3K Solidityファイルを持つ多様なデータセットの評価は、GPTScanがトークンコントラクトの高精度(90%以上)と、Web3Bugsのような大規模プロジェクトの許容精度(57.14%)を達成することを示している。
人間の監査官が見逃した9つの新たな脆弱性を含む70%以上のリコールで、地上の真実的ロジックの脆弱性を効果的に検出する。
GPTScanは高速で費用対効果があり、平均14.39秒と0.01 USDで1000行のSolidityコードをスキャンする。
さらに、静的な確認はGPTSが偽陽性の3分の2を減らすのに役立つ。
関連論文リスト
- Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We? [14.974832502863526]
近年,スマートコントラクトセキュリティの重要性が高まっている。
この問題に対処するため、スマートコントラクトの脆弱性を検出するために、多数の静的アプリケーションセキュリティテスト(SAST)ツールが提案されている。
本稿では,スマートコントラクトに対する45種類の脆弱性を含む,最新のきめ細かな分類法を提案する。
論文 参考訳(メタデータ) (2024-04-28T13:40:18Z) - Shifting the Lens: Detecting Malicious npm Packages using Large Language Models [4.479741014073169]
既存の悪意のあるコード検出技術は、しばしば高い誤分類率に悩まされる。
悪意のあるコードレビューワークフローであるSecurityAIを紹介し、ChatGPTを使って悪意のあるコードを検出する。
ベースライン比較では, 静的解析の精度とF1スコアよりも16%, 9%向上した。
論文 参考訳(メタデータ) (2024-03-18T19:10:12Z) - Evaluation of ChatGPT's Smart Contract Auditing Capabilities Based on
Chain of Thought [8.04987973069845]
本研究は,GPT-4モデルを用いたスマートコントラクトセキュリティ監査の強化の可能性を検討する。
732の脆弱性を含むSolidiFI-benchmark脆弱性ライブラリから、35のスマートコントラクトのデータセットを使用しました。
GPT-4は96.6%の精度でスマートコントラクトの脆弱性を検出できたが、リコールは37.8%、F1スコアは41.1%であった。
論文 参考訳(メタデータ) (2024-02-19T10:33:29Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
信頼性コンピューティングは、Trusted Execution Environments(TEEs)と呼ばれる特別なハードウェア隔離ユニットを使用して、コテナントクラウドデプロイメントにおける機密コードとデータの保護を可能にする。
低レベルのC/C++ベースのツールチェーンを提供するTEEは、固有のメモリ安全性の脆弱性の影響を受けやすく、明示的で暗黙的な情報フローのリークを監視するための言語構造が欠如している。
私たちは、Haskellに埋め込まれたドメイン固有言語(cla)であるHasTEE+を使って、上記の問題に対処します。
論文 参考訳(メタデータ) (2024-01-17T00:56:23Z) - Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
我々は、70,346のサンプルを含む大規模なデータセットを用いて、完全な脆弱性管理プロセスを含む6つのタスクでChatGPTの機能を探求する。
注目すべき例として、ChatGPTのソフトウェアバグレポートのタイトル生成などのタスクにおける熟練度がある。
以上の結果から,ChatGPTが抱える障害が明らかとなり,将来的な方向性に光を当てた。
論文 参考訳(メタデータ) (2023-11-11T11:01:13Z) - When ChatGPT Meets Smart Contract Vulnerability Detection: How Far Are We? [34.61179425241671]
スマートコントラクトの脆弱性を識別する際のChatGPTの性能について,実証的研究を行った。
ChatGPTは高いリコール率を達成するが、スマートコントラクトの脆弱性を特定できる精度は限られている。
我々の研究は、スマートコントラクトの脆弱性の検出に大規模な言語モデル、特にChatGPTを使用する際の長所と短所に関する洞察を提供する。
論文 参考訳(メタデータ) (2023-09-11T15:02:44Z) - Can Large Language Models Find And Fix Vulnerable Software? [0.0]
GPT-4は、その脆弱性の約4倍の脆弱性を同定した。
各脆弱性に対して実行可能な修正を提供し、偽陽性率の低いことを証明した。
GPT-4のコード修正により脆弱性の90%が減少し、コード行数はわずか11%増加した。
論文 参考訳(メタデータ) (2023-08-20T19:33:12Z) - DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT
Models [92.6951708781736]
本稿では,GPT-4とGPT-3.5に着目した大規模言語モデルの総合的信頼性評価を提案する。
GPTモデルは、有害で偏りのある出力を生成し、個人情報を漏らすために、容易に誤解され得る。
我々の研究は、GPTモデルの総合的な信頼性評価を示し、信頼性のギャップに光を当てている。
論文 参考訳(メタデータ) (2023-06-20T17:24:23Z) - Consistency Analysis of ChatGPT [65.268245109828]
本稿では,ChatGPTとGPT-4の論理的一貫した行動に対する信頼性について検討する。
その結果,両モデルとも言語理解能力と推論能力が向上しているように見えるが,論理的に一貫した予測が得られないことが示唆された。
論文 参考訳(メタデータ) (2023-03-11T01:19:01Z) - Prompting GPT-3 To Be Reliable [117.23966502293796]
この研究は信頼性を一般化可能性、公平性、校正性、事実性という4つの側面に分解する。
GPT-3はこれらすべての面において,より小型の教師付きモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-17T14:52:39Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。