HomOpt: A Homotopy-Based Hyperparameter Optimization Method
- URL: http://arxiv.org/abs/2308.03317v1
- Date: Mon, 7 Aug 2023 06:01:50 GMT
- Title: HomOpt: A Homotopy-Based Hyperparameter Optimization Method
- Authors: Sophia J. Abraham, Kehelwala D. G. Maduranga, Jeffery Kinnison,
Zachariah Carmichael, Jonathan D. Hauenstein, Walter J. Scheirer
- Abstract summary: We propose HomOpt, a data-driven approach based on a generalized additive model (GAM) surrogate combined with homotopy optimization.
We show how HomOpt can boost the performance and effectiveness of any given method with faster convergence to the optimum on continuous discrete, and categorical domain spaces.
- Score: 10.11271414863925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has achieved remarkable success over the past couple of
decades, often attributed to a combination of algorithmic innovations and the
availability of high-quality data available at scale. However, a third critical
component is the fine-tuning of hyperparameters, which plays a pivotal role in
achieving optimal model performance. Despite its significance, hyperparameter
optimization (HPO) remains a challenging task for several reasons. Many HPO
techniques rely on naive search methods or assume that the loss function is
smooth and continuous, which may not always be the case. Traditional methods,
like grid search and Bayesian optimization, often struggle to quickly adapt and
efficiently search the loss landscape. Grid search is computationally
expensive, while Bayesian optimization can be slow to prime. Since the search
space for HPO is frequently high-dimensional and non-convex, it is often
challenging to efficiently find a global minimum. Moreover, optimal
hyperparameters can be sensitive to the specific dataset or task, further
complicating the search process. To address these issues, we propose a new
hyperparameter optimization method, HomOpt, using a data-driven approach based
on a generalized additive model (GAM) surrogate combined with homotopy
optimization. This strategy augments established optimization methodologies to
boost the performance and effectiveness of any given method with faster
convergence to the optimum on continuous, discrete, and categorical domain
spaces. We compare the effectiveness of HomOpt applied to multiple optimization
techniques (e.g., Random Search, TPE, Bayes, and SMAC) showing improved
objective performance on many standardized machine learning benchmarks and
challenging open-set recognition tasks.
Related papers
- Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - A Globally Convergent Gradient-based Bilevel Hyperparameter Optimization
Method [0.0]
We propose a gradient-based bilevel method for solving the hyperparameter optimization problem.
We show that the proposed method converges with lower computation and leads to models that generalize better on the testing set.
arXiv Detail & Related papers (2022-08-25T14:25:16Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - A Comparative study of Hyper-Parameter Optimization Tools [2.6097538974670935]
We compare the performance of four python libraries, namely Optuna, Hyperopt, Optunity, and sequential model algorithm configuration (SMAC)
We found that Optuna has better performance for CASH problem and NeurIPS black-box optimization challenge.
arXiv Detail & Related papers (2022-01-17T14:49:36Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Efficient hyperparameter optimization by way of PAC-Bayes bound
minimization [4.191847852775072]
We present an alternative objective that is equivalent to a Probably Approximately Correct-Bayes (PAC-Bayes) bound on the expected out-of-sample error.
We then devise an efficient gradient-based algorithm to minimize this objective.
arXiv Detail & Related papers (2020-08-14T15:54:51Z) - A Gradient-based Bilevel Optimization Approach for Tuning
Hyperparameters in Machine Learning [0.0]
We propose a bilevel solution method for solving the hyperparameter optimization problem.
The proposed method is general and can be easily applied to any class of machine learning algorithms.
We discuss the theory behind the proposed algorithm and perform extensive computational study on two datasets.
arXiv Detail & Related papers (2020-07-21T18:15:08Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.