Heterogeneous Knowledge Fusion: A Novel Approach for Personalized
Recommendation via LLM
- URL: http://arxiv.org/abs/2308.03333v2
- Date: Fri, 18 Aug 2023 07:05:10 GMT
- Title: Heterogeneous Knowledge Fusion: A Novel Approach for Personalized
Recommendation via LLM
- Authors: Bin Yin, Junjie Xie, Yu Qin, Zixiang Ding, Zhichao Feng, Xiang Li, Wei
Lin
- Abstract summary: We propose a novel approach for personalized recommendation via Large Language Model (LLM)
Our method can effectively integrate user heterogeneous behavior and significantly improve recommendation performance.
- Score: 18.138629220610678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The analysis and mining of user heterogeneous behavior are of paramount
importance in recommendation systems. However, the conventional approach of
incorporating various types of heterogeneous behavior into recommendation
models leads to feature sparsity and knowledge fragmentation issues. To address
this challenge, we propose a novel approach for personalized recommendation via
Large Language Model (LLM), by extracting and fusing heterogeneous knowledge
from user heterogeneous behavior information. In addition, by combining
heterogeneous knowledge and recommendation tasks, instruction tuning is
performed on LLM for personalized recommendations. The experimental results
demonstrate that our method can effectively integrate user heterogeneous
behavior and significantly improve recommendation performance.
Related papers
- Generative Explore-Exploit: Training-free Optimization of Generative Recommender Systems using LLM Optimizers [29.739736497044664]
We present a training-free approach for optimizing generative recommenders.
We propose a generative explore-exploit method that can not only exploit generated items with high engagement, but also actively explore and discover hidden population preferences.
arXiv Detail & Related papers (2024-06-07T20:41:59Z) - Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement [5.734747179463411]
We propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL)
In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions.
We propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs.
arXiv Detail & Related papers (2024-04-28T15:13:36Z) - TRAWL: External Knowledge-Enhanced Recommendation with LLM Assistance [9.017820815622828]
A promising approach involves leveraging external knowledge to enrich behavioral-based recommender systems with abundant semantic information.
This approach faces two primary challenges: denoising raw external knowledge and adapting semantic representations.
We propose an External Knowledge-Enhanced Recommendation method with LLM Assistance.
arXiv Detail & Related papers (2024-03-11T12:04:20Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Causal Disentangled Variational Auto-Encoder for Preference
Understanding in Recommendation [50.93536377097659]
This paper introduces the Causal Disentangled Variational Auto-Encoder (CaD-VAE), a novel approach for learning causal disentangled representations from interaction data in recommender systems.
The approach utilizes structural causal models to generate causal representations that describe the causal relationship between latent factors.
arXiv Detail & Related papers (2023-04-17T00:10:56Z) - Heterogeneous Demand Effects of Recommendation Strategies in a Mobile
Application: Evidence from Econometric Models and Machine-Learning
Instruments [73.7716728492574]
We study the effectiveness of various recommendation strategies in the mobile channel and their impact on consumers' utility and demand levels for individual products.
We find significant differences in effectiveness among various recommendation strategies.
We develop novel econometric instruments that capture product differentiation (isolation) based on deep-learning models of user-generated reviews.
arXiv Detail & Related papers (2021-02-20T22:58:54Z) - Generative Inverse Deep Reinforcement Learning for Online Recommendation [62.09946317831129]
We propose a novel inverse reinforcement learning approach, namely InvRec, for online recommendation.
InvRec extracts the reward function from user's behaviors automatically, for online recommendation.
arXiv Detail & Related papers (2020-11-04T12:12:25Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.