Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement
- URL: http://arxiv.org/abs/2404.18214v2
- Date: Wed, 8 May 2024 17:23:11 GMT
- Title: Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement
- Authors: Zeyu Hu, Yuzhi Xiao, Tao Huang, Xuanrong Huo,
- Abstract summary: We propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL)
In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions.
We propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs.
- Score: 5.734747179463411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation is one of the important branches of recommender system, aiming to achieve personalized recommended items for the future through the analysis and prediction of users' ordered historical interactive behaviors. However, along with the growth of the user volume and the increasingly rich behavioral information, how to understand and disentangle the user's interactive multi-intention effectively also poses challenges to behavior prediction and sequential recommendation. In light of these challenges, we propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL). In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions, which means that the model needs to not only mine the most relevant implicit intention for each user, but also impair the influence from irrelevant intentions. Therefore, we choose Variational Auto-Encoder (VAE) to realize the disentanglement of users' multi-intentions. We propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs, respectively. Experimental results show that MIDCL not only has significant superiority over most existing baseline methods, but also brings a more interpretable case to the research about intention-based prediction and recommendation.
Related papers
- Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Knowledge Enhancement for Multi-Behavior Contrastive Recommendation [39.50243004656453]
We propose a Knowledge Enhancement Multi-Behavior Contrastive Learning Recommendation (KMCLR) framework.
In this work, we design the multi-behavior learning module to extract users' personalized behavior information for user-embedding enhancement.
In the optimization stage, we model the coarse-grained commonalities and the fine-grained differences between multi-behavior of users to further improve the recommendation effect.
arXiv Detail & Related papers (2023-01-13T06:24:33Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Intent Contrastive Learning for Sequential Recommendation [86.54439927038968]
We introduce a latent variable to represent users' intents and learn the distribution function of the latent variable via clustering.
We propose to leverage the learned intents into SR models via contrastive SSL, which maximizes the agreement between a view of sequence and its corresponding intent.
Experiments conducted on four real-world datasets demonstrate the superiority of the proposed learning paradigm.
arXiv Detail & Related papers (2022-02-05T09:24:13Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.