Coupling Symbolic Reasoning with Language Modeling for Efficient
Longitudinal Understanding of Unstructured Electronic Medical Records
- URL: http://arxiv.org/abs/2308.03360v1
- Date: Mon, 7 Aug 2023 07:29:49 GMT
- Title: Coupling Symbolic Reasoning with Language Modeling for Efficient
Longitudinal Understanding of Unstructured Electronic Medical Records
- Authors: Shivani Shekhar, Simran Tiwari, T. C. Rensink, Ramy Eskander, Wael
Salloum
- Abstract summary: We examine the power of coupling symbolic reasoning with language modeling toward improved understanding of unstructured clinical texts.
We show that such a combination improves the extraction of several medical variables from unstructured records.
- Score: 0.9003755151302328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of Artificial Intelligence (AI) in healthcare has been
revolutionary, especially with the recent advancements in transformer-based
Large Language Models (LLMs). However, the task of understanding unstructured
electronic medical records remains a challenge given the nature of the records
(e.g., disorganization, inconsistency, and redundancy) and the inability of
LLMs to derive reasoning paradigms that allow for comprehensive understanding
of medical variables. In this work, we examine the power of coupling symbolic
reasoning with language modeling toward improved understanding of unstructured
clinical texts. We show that such a combination improves the extraction of
several medical variables from unstructured records. In addition, we show that
the state-of-the-art commercially-free LLMs enjoy retrieval capabilities
comparable to those provided by their commercial counterparts. Finally, we
elaborate on the need for LLM steering through the application of symbolic
reasoning as the exclusive use of LLMs results in the lowest performance.
Related papers
- Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - A Methodology for Explainable Large Language Models with Integrated Gradients and Linguistic Analysis in Text Classification [2.556395214262035]
Neurological disorders that affect speech production, such as Alzheimer's Disease (AD), significantly impact the lives of both patients and caregivers.
Recent advancements in Large Language Model (LLM) architectures have developed many tools to identify representative features of neurological disorders through spontaneous speech.
This paper presents an explainable LLM method, named SLIME, capable of identifying lexical components representative of AD.
arXiv Detail & Related papers (2024-09-30T21:45:02Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - LLMs Accelerate Annotation for Medical Information Extraction [7.743388571513413]
We propose an approach that combines Large Language Models (LLMs) with human expertise to create an efficient method for generating ground truth labels for medical text annotation.
We rigorously evaluate our method on a medical information extraction task, demonstrating that our approach not only substantially cuts down on human intervention but also maintains high accuracy.
arXiv Detail & Related papers (2023-12-04T19:26:13Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Large Language Models for Biomedical Knowledge Graph Construction:
Information extraction from EMR notes [0.0]
We propose an end-to-end machine learning solution based on large language models (LLMs)
The entities used in the KG construction process are diseases, factors, treatments, as well as manifestations that coexist with the patient while experiencing the disease.
The application of the proposed methodology is demonstrated on age-related macular degeneration.
arXiv Detail & Related papers (2023-01-29T15:52:33Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.