A reading survey on adversarial machine learning: Adversarial attacks
and their understanding
- URL: http://arxiv.org/abs/2308.03363v1
- Date: Mon, 7 Aug 2023 07:37:26 GMT
- Title: A reading survey on adversarial machine learning: Adversarial attacks
and their understanding
- Authors: Shashank Kotyan
- Abstract summary: Adversarial Machine Learning exploits and understands some of the vulnerabilities that cause the neural networks to misclassify for near original input.
A class of algorithms called adversarial attacks is proposed to make the neural networks misclassify for various tasks in different domains.
This article provides a survey of existing adversarial attacks and their understanding based on different perspectives.
- Score: 6.1678491628787455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning has empowered us to train neural networks for complex data with
high performance. However, with the growing research, several vulnerabilities
in neural networks have been exposed. A particular branch of research,
Adversarial Machine Learning, exploits and understands some of the
vulnerabilities that cause the neural networks to misclassify for near original
input. A class of algorithms called adversarial attacks is proposed to make the
neural networks misclassify for various tasks in different domains. With the
extensive and growing research in adversarial attacks, it is crucial to
understand the classification of adversarial attacks. This will help us
understand the vulnerabilities in a systematic order and help us to mitigate
the effects of adversarial attacks. This article provides a survey of existing
adversarial attacks and their understanding based on different perspectives. We
also provide a brief overview of existing adversarial defences and their
limitations in mitigating the effect of adversarial attacks. Further, we
conclude with a discussion on the future research directions in the field of
adversarial machine learning.
Related papers
- A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - How Deep Learning Sees the World: A Survey on Adversarial Attacks &
Defenses [0.0]
This paper compiles the most recent adversarial attacks, grouped by the attacker capacity, and modern defenses clustered by protection strategies.
We also present the new advances regarding Vision Transformers, summarize the datasets and metrics used in the context of adversarial settings, and compare the state-of-the-art results under different attacks, finishing with the identification of open issues.
arXiv Detail & Related papers (2023-05-18T10:33:28Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Deviations in Representations Induced by Adversarial Attacks [0.0]
Research has shown that deep learning models are vulnerable to adversarial attacks.
This finding brought about a new direction in research, whereby algorithms were developed to attack and defend vulnerable networks.
We present a method for measuring and analyzing the deviations in representations induced by adversarial attacks.
arXiv Detail & Related papers (2022-11-07T17:40:08Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
Deep neural networks are vulnerable to intentionally crafted adversarial examples.
Various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models.
arXiv Detail & Related papers (2021-08-29T08:11:36Z) - Adversarial Machine Learning for Cybersecurity and Computer Vision:
Current Developments and Challenges [2.132096006921048]
Research in adversarial machine learning addresses a significant threat to the wide application of machine learning techniques.
We first discuss three main categories of attacks against machine learning techniques -- poisoning attacks, evasion attacks, and privacy attacks.
We notice adversarial samples in cybersecurity and computer vision are fundamentally different.
arXiv Detail & Related papers (2021-06-30T03:05:58Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.