Towards Machine Learning-based Fish Stock Assessment
- URL: http://arxiv.org/abs/2308.03403v1
- Date: Mon, 7 Aug 2023 08:44:15 GMT
- Title: Towards Machine Learning-based Fish Stock Assessment
- Authors: Stefan L\"udtke and Maria E. Pierce
- Abstract summary: In this paper, we investigate the use of machine learning models to improve the estimation and forecast of relevant stock parameters.
We propose a hybrid model that combines classical statistical stock assessment models with supervised ML, specifically gradient boosted trees.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate assessment of fish stocks is crucial for sustainable fisheries
management. However, existing statistical stock assessment models can have low
forecast performance of relevant stock parameters like recruitment or spawning
stock biomass, especially in ecosystems that are changing due to global warming
and other anthropogenic stressors. In this paper, we investigate the use of
machine learning models to improve the estimation and forecast of such stock
parameters. We propose a hybrid model that combines classical statistical stock
assessment models with supervised ML, specifically gradient boosted trees. Our
hybrid model leverages the initial estimate provided by the classical model and
uses the ML model to make a post-hoc correction to improve accuracy. We
experiment with five different stocks and find that the forecast accuracy of
recruitment and spawning stock biomass improves considerably in most cases.
Related papers
- Evaluating Deep Learning Approaches for Predictions in Unmonitored Basins with Continental-scale Stream Temperature Models [1.8067095934521364]
Recent machine learning (ML) models can harness vast datasets for accurate predictions at large spatial scales.
This study explores questions regarding model design and data needed for inputs and training to improve performance.
arXiv Detail & Related papers (2024-10-23T15:36:59Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Nowcasting Madagascar's real GDP using machine learning algorithms [0.0]
We investigate the predictive power of different machine learning algorithms to nowcast Madagascar's gross domestic product (GDP)
We trained popular regression models, including linear regularized regression (Ridge, Lasso, Elastic-net), dimensionality reduction model (principal component regression), k-nearest neighbors algorithm (k-NN regression)
We measured the nowcast accuracy of each model by calculating the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
arXiv Detail & Related papers (2023-12-24T20:40:54Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Forest Parameter Prediction by Multiobjective Deep Learning of
Regression Models Trained with Pseudo-Target Imputation [6.853936752111048]
In prediction of forest parameters with data from remote sensing, regression models have traditionally been trained on a small sample of ground reference data.
This paper proposes to impute this sample of true prediction targets with data from an existing RS-based prediction map that we consider as pseudo-targets.
We use prediction maps constructed from airborne laser scanning (ALS) data to provide accurate pseudo-targets and free data from Sentinel-1's C-band synthetic aperture radar (SAR) as regressors.
arXiv Detail & Related papers (2023-06-19T18:10:47Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Forecast Evaluation in Large Cross-Sections of Realized Volatility [0.0]
We evaluate the predictive accuracy of the model based on the augmented cross-section when forecasting Realized volatility.
We study the sensitivity of forecasts to the model specification by incorporating a measurement error correction as well as cross-sectional jump component measures.
arXiv Detail & Related papers (2021-12-09T13:19:09Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Coupling Machine Learning and Crop Modeling Improves Crop Yield
Prediction in the US Corn Belt [2.580765958706854]
This study investigates whether coupling crop modeling and machine learning (ML) improves corn yield predictions in the US Corn Belt.
The main objectives are to explore whether a hybrid approach (crop modeling + ML) would result in better predictions, and determine the features from the crop modeling that are most effective to be integrated with ML for corn yield prediction.
arXiv Detail & Related papers (2020-07-28T16:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.