Communication-Efficient Device Scheduling for Federated Learning Using Lyapunov Optimization
- URL: http://arxiv.org/abs/2503.00569v1
- Date: Sat, 01 Mar 2025 17:30:56 GMT
- Title: Communication-Efficient Device Scheduling for Federated Learning Using Lyapunov Optimization
- Authors: Jake B. Perazzone, Shiqiang Wang, Mingyue Ji, Kevin Chan,
- Abstract summary: Federated learning (FL) is a useful tool that enables the training of machine learning models over distributed data without having to collect data centrally.<n>When deploying FL in constrained wireless environments, connectivity, intermittent connection quality, and non-i.i.d. data can severely slow the training of machine learning models.
- Score: 35.34598274073446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a useful tool that enables the training of machine learning models over distributed data without having to collect data centrally. When deploying FL in constrained wireless environments, however, intermittent connectivity of devices, heterogeneous connection quality, and non-i.i.d. data can severely slow convergence. In this paper, we consider FL with arbitrary device participation probabilities for each round and show that by weighing each device's update by the reciprocal of their per-round participation probability, we can guarantee convergence to a stationary point. Our bound applies to non-convex loss functions and non-i.i.d. datasets and recovers state-of-the-art convergence rates for both full and uniform partial participation, including linear speedup, with only a single-sided learning rate. Then, using the derived convergence bound, we develop a new online client selection and power allocation algorithm that utilizes the Lyapunov drift-plus-penalty framework to opportunistically minimize a function of the convergence bound and the average communication time under a transmit power constraint. We use optimization over manifold techniques to obtain a solution to the minimization problem. Thanks to the Lyapunov framework, one key feature of the algorithm is that knowledge of the channel distribution is not required and only the instantaneous channel state information needs to be known. Using the CIFAR-10 dataset with varying levels of data heterogeneity, we show through simulations that the communication time can be significantly decreased using our algorithm compared to uniformly random participation, especially for heterogeneous channel conditions.
Related papers
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
Federated learning (FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other.
As the model size grows, the training latency due to limited transmission bandwidth and private information degrades while using differential privacy (DP) protection.
We propose sparsification empowered FL framework wireless channels, in over to improve training efficiency without sacrificing convergence performance.
arXiv Detail & Related papers (2023-04-09T05:21:15Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
Federated learning (FL) is a key enabler for efficient communication and computing leveraging devices' distributed computing capabilities.
This paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNNs)
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2022-03-26T15:06:13Z) - Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization [26.559267845906746]
Time learning (FL) is a useful tool in distributed machine learning that utilizes users' local datasets in a privacy-preserving manner.
In this paper, we provide a novel convergence analysis non-efficient convergence bound algorithm.
We also develop a new selection and power allocation algorithm that minimizes a function of the convergence bound and the average communication under a power constraint.
arXiv Detail & Related papers (2022-01-19T23:25:24Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.