Quadratic acceleration of multi-step probabilistic algorithms for state
preparation
- URL: http://arxiv.org/abs/2308.03605v2
- Date: Mon, 21 Aug 2023 15:14:19 GMT
- Title: Quadratic acceleration of multi-step probabilistic algorithms for state
preparation
- Authors: Hirofumi Nishi and Taichi Kosugi and Yusuke Nishiya and Yu-ichiro
Matsushita
- Abstract summary: A non-unitary operator is typically designed to decay undesirable states contained in an initial state.
Probabilistic algorithms do not accelerate the computational process compared to classical ones.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For quantum state preparation, a non-unitary operator is typically designed
to decay undesirable states contained in an initial state using ancilla qubits
and a probabilistic action. Probabilistic algorithms do not accelerate the
computational process compared to classical ones. In this study, quantum
amplitude amplification (QAA) and multi-step probabilistic algorithms are
combined to achieve quadratic acceleration. This method outperforms quantum
phase estimation in terms of infidelity. The quadratic acceleration was
confirmed by the probabilistic imaginary-time evolution (PITE) method.
Related papers
- Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
We present a new method for calculating expectation values of operators that can be expressed as a linear combination of unitary (LCU) operators.
This method is general for any quantum algorithm and is of particular interest in the acceleration of variational quantum algorithms.
arXiv Detail & Related papers (2025-03-03T17:15:23Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Recovering the original simplicity: succinct and deterministic quantum
algorithm for the welded tree problem [0.0]
This work revisits quantum algorithms for the well-known welded tree problem.
It proposes a very succinct quantum algorithm based on the simplest coined quantum walks.
arXiv Detail & Related papers (2023-04-17T16:03:50Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Fragmented imaginary-time evolution for early-stage quantum signal
processors [0.0]
Simulating quantum imaginary-time evolution (QITE) is a major promise of quantum computation.
Our main contribution is a new generation of deterministic, high-precision QITE algorithms.
We present two QITE-circuit sub-routines with excellent complexity scaling.
arXiv Detail & Related papers (2021-10-25T18:02:24Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Essentiality of the Non-stoquastic Hamiltonians and Driver Graph Design
in Quantum Optimization Annealing [0.0]
A non-stoquastic Hamiltonian can be stoquastic or properly non-stoquastic when its ground state has both positive and negative amplitudes.
We show how to design an appropriate XX-driver graph with an appropriate XX-coupler strength without knowing the prior problem structure.
The speedup is exponential in the original AC-distance, which can be sub-exponential or exponential in the system size.
arXiv Detail & Related papers (2021-05-05T15:21:34Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Efficient State Preparation for Quantum Amplitude Estimation [0.951828574518325]
Quantum Amplitude Estimation can achieve a quadratic speed-up for applications classically solved by Monte Carlo simulation.
Currently known efficient techniques require problems based on log-concave probability distributions, involve learning an unknown distribution from empirical data, or fully rely on quantum arithmetic.
We introduce an approach to simplify state preparation, together with a circuit optimization technique, both of which can help reduce the circuit complexity for QAE state preparation significantly.
arXiv Detail & Related papers (2020-05-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.